Novel Syntheses of 5-Aminothieno[2,3-c]pyridazine, Pyrimido $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ thieno $\left[2,3\right.$-c]pyridazine, Pyridazino $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ thieno-[3,2-d][1,2,3]triazine and Phthalazine Derivatives

Mohamed S. A. El-Gaby, ${ }^{*}$ Adel M. Kamal El-Dean, ${ }^{\text {T }}$ Abd El-Aal M. Gaber, ${ }^{*}$ Hassan A. Eyada, ${ }^{\dagger}$ and Ahmed S. N. AI-Kamali ${ }^{+}$
Chemistry Deparment, Faculv of Science, A/-Azhar University, at.Assiut, 71524 Assiut, Egvpt
${ }^{\dagger}$ Chemistry Department, Faculty of Science, Assiut Cmiversity, Assiut 71516, Egvpt
${ }^{\ddagger}$ Chemistry Department, Faculty of Science, Al-Azhar Unversity, Nasr City, Cairo, Egvpt RecenvedMfarch 28, 2003

Abstract

Condensation of 4-cyano-5.6-dimethyl-3-py ridazinone 1 with aromatic aldehydes gave the novel styryl derivatives $\mathbf{2 a - c}$. Refluxing of compound $\mathbf{2 a}$ with phosphons oxychloride furnished 3-chloropyridazine derivative 3 . Compound 3 was reacted with thiourea and produced pyridazine- $3(2 H)$ thione 4 . Thieno[2.3-c]py ridazines 5 a-e were achieved by cycloalkylation of compound 4 with halocompounds in methanol under reflux and in the presence of sodium methoxide. Also. refluxing of compound 4 with F -substituted chloroacetamide in the presence of potassium carbonate afforded thienopyridazines 6ae. Cyclization of compound 6 with some electrophilic reagents as carbon disulfide and triethyl orthoformate furnished the novel py rimido[$\left.4^{\prime} .5^{\prime}: 4.5\right]$ thieno[2.3 -c]pyridazines 12 and $13 a-c$. respectively. Diazotisation of compound 6 with sodium nitrite in acetic acid produced the pyridazino[4'.3'.4.5]thieno[3.2-d][1.2.3]triazines 14a-c. Ternary condensation of compound $\mathbf{1}$. aromatic aldehydes and malononitrile in ethanol containing piperidine under reflux afforded the novel phthalazines 16a-c. Compound $\mathbf{3}$ was subjected to some nucleophilic substitution reactions with amines and sodium azide and formed the aminopyridazines $\mathbf{1 7 a} \mathbf{a}$ b and tetrazolo[1.5-b]py ridazine 19. respectively. The stnictures of the sy nthesized compounds were established by elemental and spectral analyses.

Key Words : Pyridazine. Thieno[2.3-c]pyridazine phthalazine and condensed pyridazines

Introduction

A considerable number of pyridazine derivatives were found to have antibacterial. ${ }^{1}$ analgesic, ${ }^{3}$ antiinflanumatory. ${ }^{3}$ anticonvulsant, ${ }^{4}$ acetyl-cholinesterase inhibitors, ${ }^{5}$ aldose reductase inhibitor and antioxidant ${ }^{6}$ properties. Some thienopyridazines have been reported to possess considerable antiasthmatic ${ }^{7}$ and fibrinolytic ${ }^{8}$ activities. In addition, 1.2,3triazine systems condensed with carbocycles or heterocycles are known to exhibit antiallergic activity ${ }^{\text {P }}$ On the basis of these reports and in continuation in the synthesis of novel condensed pyridazine derivatives, ${ }^{101 / 4}$ we reported here the synthesis of 5 -aminothieno[2,3-c]pyridazine. pyrimido [4'.5': 4,5]thieno[2,3-c]pyridazine, pyridazino $\left[4^{\prime}, 55^{\prime}: 4,5\right]$ thieno $[3,2-\mathrm{d}]$ [1.2.3]triazine and phthalazine from t-cyano-3-mercapto-6-methyl-5-styryl-pyridazine 4 as starting material.

Results and Discussion

The starting material 4 -cyano- 5 ,6-dimethyl-3-pyridazinone 1 was readily obtained by treatment of diacetyl with hydrazine hydrate followed by cyclocondensation with ethyl cyanoacetate in the presence of sodium ethoxide. ${ }^{15}$ Styryl derivatives 2a-c were achieved by refluxing of pyridazinone 1 with aromatic aldehydes in ethanol and in the presence of piperidine. When compound $\mathbf{2 a}$ was refluxed with phosphorus
oxychloride gave the 3 -chloropyridazine derivative $\mathbf{3}$ in 87% yield. Compound 3 was subjected to addition-elimination reaction with thiourea ${ }^{16}$ in ethanol under reflux to afford 4 -cyano-6-methyl-5-styryl-pyridazine- $3(2 \mathrm{H}$)thione 4 (Scheme 1). The structure of compound 4 was established by another

4

2a; $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
2b; $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-\mathrm{p}$
2c; $\wedge \mathrm{r}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{p}$
Scheme 1
synthetic route via thionation of compound $\mathbf{2 a}$ with phosphorus pentasulfide under reflux in pyridine.

Cycloalkylation of compound 4 with chloroacetonitrile in the presence of an equimolar amount of sodium methoxide in methanol afforded 5-amino-3-methyl-4-styryl-thieno[2.3-c]-pyridazine-6-carbonitrile 5a in high yield (Scheme 2). The structure of compound $\mathbf{5 a}$ was established using microanalyses and spectroscopic data. The infrared spectrum of 5 a exhibited strong absorption at $2200 \mathrm{~cm}^{-1}$ due to the carbonitrile group in addition to amino functional group at 3450 and $3320 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{HNMR}$ spectrum of 5 a in DMSO-d d_{6} displayed a broad singlet because of amino protons at $\delta 6.10-6.20$. singlet at δ 2.80 due to methyl protons and a multiplet at $\delta 6.60-7.42$ which was assigned to aromatic and ethylene protons. In addition. the structure of compound $\mathbf{5 a}$ was confirmed by its mass spectrum which showed a molecular ion peak at m / z 292 which is the base peak in the spectrum. In a similar manner when compound 4 was cyclocondensed with chloroacetone. ethyl chloroacetate and phenacyl bromide derivatives yielded the corresponding thienopyridazines 5b, 5c. 5d and 5e, respectively' (Scheme 2). Cyclocondensation of compound 4 with N-substituted chloroacetamide in the presence of anhydrous potassium carbonate to form the novel carboxamide derivatives 6a-e (Scheme 2). The infrared spectra of compounds 6a-e showed the absence of nitrile functional group and the presence of $\mathrm{NH} / \mathrm{NH}_{2}$ as well as carbonyl groups. ${ }^{1} \mathrm{HNMR}$ spectrum of compound 6e in DMSO-d ${ }_{6}$ displayed the presence of acetyl. methyl amino aromatic. ethylene and NH protons. In the mass spectrum of compound 6c a molecular ion peak was observed at $\mathrm{m} / \mathrm{z} 416$ which is the base peak in the spectrum.

Ethoxymethyleneamino derivative 7 was obtained by treatment of enaminonitrile 5 a with triethyl orthoformate in the presence of acetic anhydride. When compound 7 was allowed to react with hydrazine hydrate in benzene at room temperature the starting material 5 a was produced (mp.

5a: $\mathrm{R}=\mathrm{CV}$
5b: $\mathrm{R}=\mathrm{COCH}_{3}$
5c: $\mathrm{R}=\mathrm{COOC} \mathrm{C}_{2} \mathrm{H}_{5}$
5d: $\mathrm{R}=\mathrm{COC}_{r} \mathrm{H}_{5}$
5e: $\mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{Br}-\mathrm{p}$

6a-e
6a: $R=H$
6b: $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$
6c: $\mathrm{R}=\mathrm{C}_{6}, \mathrm{H}_{4} \mathrm{OCH}_{5}-\mathrm{p}$
6d: $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{5}-\mathrm{p}$
$6 e: R=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCH}_{3}-\mathrm{P}$

Scheme 2

Scheme 3
nmp and TLC). The condensed pyrimidine 8 was ruled out on the basis of analytical and spectral data. The formation of compound 5 a from 7 was assumed to proceed via the addition of hydrazine at the imino functional group to form intermediate 9 followed by elimination of ethyl formate hydrazone ${ }^{17}$ (Scheme 3).

Refluxing of compound 5 a with carbon disulfide ${ }^{18}$ in pyridine afforded the corresponding pyrimido $\left[4^{\prime} .5^{\prime}: 4.5\right]$ -thieno[2.3-c]pyridazine derivative 10 . The infrared spectrum of compound $\mathbf{1 0}$ was free of nitrile functional group and displayed the presence of two NH functional groups at 3460 and $3320 \mathrm{~cm}^{-1}$. Compound 10 was subjected to react with two molecules of ethyl chloroacetate under reflux in the presence of fused sodium acetate and furnished the di(ethoxycarbonylthio) derivative 11. Reaction of compound 6 c with carbon disulfide in pyridine gave the condensed pyrimidinethione derivative 12. Cyclization of compounds 6 a-c with triethyl orthoformate in the presence of catalytic amounts of glacial acetic acid produced the pyrimidothienopyridazine derivatives 13a-c. Pyridazino[4'.3'4.5]thieno[3.2-d][1.2.3]triazine derivatives $\mathbf{1 + a}-\mathrm{c}$ were obtained by diazotisation of compounds $\mathbf{6 c}-\mathrm{e}$ with sodium nitrite in glacial acetic acid at $0^{\circ} \mathrm{C}$ (Scheme 4).
Ternary condensation of aromatic aldehyde malononitrile and methyl carbonitrile 1 in the presence of a catalytic amount of piperidine afforded the novel derivatives of phthalazine $16 \mathrm{a}-\mathrm{c}$ in good yields (Scheme 5). Analytical and spectral data were consistent with this structure. The infrared spectra of compounds $\mathbf{1 6 a - c}$ revealed the presence of amino. cyano and carbonyl functional groups whereas ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 6 a}$ in DMSO-d displayed the presence of signal at $\delta 2.4\left(\mathrm{~s} .3 \mathrm{H} . \mathrm{CH}_{3}\right)$ in addition to amino and aromatic protons. A reaction mechanism ${ }^{19}$ proposed for the formation of the phthalazines $16 \mathrm{a}-\mathrm{c}$ is illustrated in Scheme (5). The structure of phthalazine derivatives 16a-c were confirmed by another synthetic route wia refluxing of compound $\mathbf{1}$ with aromatic aldehydes in ethanol containing

Scheme 4

piperidine to afford styryl derivatives 2a-c which upon treatment with malononitrile in the presence of piperidine yielded the corresponding phthalazines 16a-c (Scheme 5). Also. on refluxing compound 1 with arylidenemalononitriles $\mathbf{1 5}$ in ethanol in the presence of piperidine, the phthalazines 16a-c were obtained.
This contribution was extended to study some nucleophilic substitution reactions with chloropyridazine 3 . Thus compound 3 was reacted with piperidine and aniline in benzene under reflux to yield the novel aminopyridazine derivatives 17 a and $\mathbf{1 7 b}$. respectively. Sodium azide as nucleophile was reacted with chloropyridazine 3 in dimethylsulfoxide at 90 ${ }^{\circ} \mathrm{C}$ to form the novel tetrazolo[1.5-b]-pyridazine 19 . The azidopyridazine 18 was excluded on the basis of infrared spectrum which showed the absence of azide functional group. Treatment of compound 3 with triphenylphosphine under reflux to produce the (triphenylphosphoranilidene)amino derivative 20 . The formation of $\mathbf{2 0}$ was assumed to proceed through triphenylphosphine attack the tetrazole moiety followed by elimination of nitrogen molecule ${ }^{-0}$ (Scheme 6).

Scheme 5

Scheme 6

Experimental Section

Melting points were determined on a Fisher-John melting points apparatus and are uncorrected. IR spectra were recorded on a Shimadzu 470 spectrophotometer using KBr pellets. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were measured on a Varian $390-90$ MHz NMR spectrometer using TMS as internal standard. Elemental analyses were performed on a Perkin-Elmer 240 C microanalyzer. The mass spectra were recorded on Jeol-JMS-600 apparatus. The physical and spectral data are shown in Tables 1 and 2 . respectively.
4-Cyano-6-methyl-5-styryl-3-pyridazinone derivatives ($\mathbf{2 a}-\mathrm{c}$). To a solution of compound $\mathbf{1}(0.01 \mathrm{~mole}$) in 50 mL of absolute ethanol. aromatic aldehyde (0.01 mole) and catalytic amount of piperidine were added. The reaction mixture was heated for 4 h . then poured into ice water $/ \mathrm{HCl}$ mixture. The solid product was collected by filtration and recrystallized from the proper solvent to give $\mathbf{2 a}$-c
3-Chloro-4-cyano-6-methyl-5-styrylpyridazine (3). Compound 2 a (0.01 mole) was refluxed with phosphorus oxychloride (15 mL) for 3 h . The cooled reaction mixture was slowly added into the crushed ice water. The resulting solid was filtered. dried and recrystallized from the proper solvent to give 3 .
4-Cyano-3-mercapto-6-methyl-5-styrylpyridazine (4).
Method A: A mixture of compound 3 (0.01 mole) and thiourea (0.012 mole) in dry ethanol (50 mL) was heated under reflux for 3 h . The obtained solid product was recrystallized from the proper solvent to give 4 .
Method B: A mixture of compound 2a (0.01 mole) and phosphorus pentasulfide (0.012 mole) in pyridine (15 mL) was refluxed for 2 hr . then allowed to cool and poured into cold water (100 mL). The solid product was collected and recrystallized to give 4
5-Amino-3-methyl-4-styryl-6-substituted-thieno [2,3-c]pyridazine derivatives (5a-e): General procedure. A mixture of compound 4 (0.01 mole), sodium methoxide (0.01 mole) and halocompound (0.01 mole) in 50 mL methanol was refluxed for 2 h . The separated product was collected on cooling and recrystallized from the proper solvent to give 5 .
5-Amino-3-methyl-t-styryl-6-(substituted carbamoyl)-thieno[2,3-c]-pyridazine derivatives (6a-e): General procedure. A mixture of compound + (0.01 mole). appropriate N-substituted chloroacetamide (0.01 mole) and anhydrous potassium carbonate (2 g) in absolute ethanol (40 mL) was heated under reflux for 2 h . then allowed to cool. The solid product was collected, washed with water and recrystallized from the proper solvent to give 6 . MS (6a): $310\left(\mathrm{M}^{+}: 2.1 \%\right) .312$ (M+2: 0.4%). 308 (28\%). 291 (61%). 264 (base peak: 100%). $215(39 \%) .187(7.9 \%) .164(2.1 \%)$. 115 (1.4\%) and 76 (1.1\%).
5-Ethoxymethyleneamino-3-methyl-t-styryl-thieno[2,3c]-pyridazin-6-carbonitrile (7). A mixture of compound $\mathbf{5 a}$ (0.01 mole), triethyl orthoformate (3 mL) and acetic anhydride (10 mL) was heated under reflux for 4 h . then allowed to cool. The product was collected and recrystallized from the
proper solvent to give 7
Formation of 3-methyl-4-styryl-5,6,7,8-tetrahydro-6,8-dithioso-pyrimido $\left[4^{\prime}, \mathbf{5}^{\prime}: 4,5\right]$ thieno[2,3 -c]pyridazine (10) and 3-methyl-4-styryl-7-(4-methoxyphenyl)-5,6,7,8-tetra-hydro-6-thioxopyrimido [4',5':4,5]thieno[2,3-c]pyridazine (12). A mixture of compound 5 a or $6 \mathrm{c}(0.01 \mathrm{~mole})$ and carbon disulfide (10 mL) in dry pyridine (20 mL) was heated on a water bath for 10 h . The solid product was precipitated on cooling. then collected and recrystallized from the proper solvent to give $\mathbf{1 0}$ and $\mathbf{1 2}$ respectively.

3-Methyl-4-styryl-6,8-di(ethoxycarbonylmethylthio)-pyrimido-[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ thieno $[2,3-\mathrm{c}]$ pyridazine (11). A mixture of compound 10 (0.01 mole). ethyl chloroacetate (0.01 mole) and sodium acetate (2 g) in ethanol (30 mL) was refluxed for 1 h , then allowed to cool. The solid product was collected and recrystallized from the proper solvent to give 11.

3-Methyl-4-styryl-7-(4-substituted phenyl)-7,8-dihydro-8-oxopyrimido $\left[4^{\prime}, 5^{\prime}: 4,5\right]$ thieno $[2,3$-c]pyridazine derivatives ($13 \mathrm{a}-\mathrm{c}$): General procedure. To a mixture of compound 6 (0.01 mole) and triethyl orthoformate (5 mL). drops of acetic acid was added. The reaction mixture was heated under reflux for 1 h . The solid product was collected and recrystallized from the proper solvent to give 13. MS (13a): $320\left(\mathrm{M}^{-}\right.$: base peak). $322(\mathrm{M}+2: 6.7 \%) .291$ (9.8%). 265 (1.3%). 242 (40%). 219 (1.5%) and 187 (1\%). MS (13b): $426\left(\mathrm{M}^{+}\right.$: base peak), $396(4 \%), 348(17 \%), 291(1.4 \%), 215$ (7.9\%) and $77(0.22 \%)$.

3-Methyl-4-styryl-7-(4-substituted phenyl)-7,8-dihydro-8-oxopyridaz-ino $\left[4^{\prime}, 33^{\prime}: 4,5\right]$ thieno $[3,2-\mathrm{d}][1,2,3]$ triazine (14 ac): General procedure. To a compound 6 (0.01 mole) dissolved in acetic acid (20 mL), sodium nitrite solution (0.5 g in $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) was added drop by drop with stirring during 15 minutes. After the addition was finished. stirring was continued for additional one hour and then allowed to stand for 5 hours. The solid product was collected and recrystallized from the proper solvent to give 14 .

5-Amino-1-methyl-4-0x0-7-aryl-3,4-dihydrophthalazin-6-carbonitriles ($16 \mathrm{a}-\mathrm{c}$): General procedure.

Method (A): A misture of compound 1 (0.01 mole). aromatic aldehyde (0.01 mole) and malononitrile (0.01 mole) in ethanol (50 mL) in the presence of piperidine (0.5 mLL) was heated under reflux for 4 h . then poured into ice/ HCl mixture. The solid product was collected and recrystallized from the proper solvent to give 16.
Method (B): To a solution of 4 -styryl derivative 2 (0.01 mole) in 50 mL ethanol. malononitrile (0.01 mole) and catalytic amount of piperidine were added. The reaction mixture was heated under reflux for 4 h . then poured into ice/ HCl mixture. The solid product was collected and recrystallized from the proper solvent to give 16.

Method (C): To a solution of compound 1 (0.01 mole) in 50 mL of ethanol. benzy lidenemalononitrile $\mathbf{1 5}$ (0.01 mole) and catalytic amount of piperidine were added. The reaction mixture was heated under reflux for 4 h , then poured into ice $/ \mathrm{HCl}$ mixture. The solid product was collected and recrystallized from the proper solvnet to give 16.

Table 1. Physical data for the synthesis compounds

Compd. No.	M.p. (${ }^{\circ} \mathrm{C}$)	Yield (\%) (Color)	Solvent cryst.	Molecular formula	Elemental analysis (Calc./Found)			
					C\%	H\%	N\%	\$\%
2a	298	$\begin{gathered} 94 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{1} \mathrm{~N}_{\mathrm{N}} \mathrm{OO} \\ (237.25) \end{gathered}$	$\begin{aligned} & \hline 70.87 \\ & 70.92 \end{aligned}$	$\begin{aligned} & 4.67 \\ & 4.66 \end{aligned}$	$\begin{aligned} & 17.71 \\ & 17.70 \end{aligned}$	
2 b	280	$\begin{gathered} 78 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\mathrm{C}_{1, \mathrm{H}_{1} \mathrm{~N}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}}$	$\begin{aligned} & 67.40 \\ & 67.50 \end{aligned}$	$\begin{aligned} & 4.90 \\ & 4.89 \end{aligned}$	$\begin{aligned} & 15.72 \\ & 15.75 \end{aligned}$	
2 c	312	$\begin{gathered} 50 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\underset{(271.69)}{\mathrm{C}_{1+} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}}$	$\begin{aligned} & 61.89 \\ & 61.90 \end{aligned}$	$\begin{aligned} & 3.71 \\ & 3.70 \end{aligned}$	$\begin{aligned} & 15.47 \\ & 15.52 \end{aligned}$	
3	200	$\begin{gathered} 87 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{H}_{6} \mathrm{Cl}_{3}$	$\begin{aligned} & 65.76 \\ & 65.80 \end{aligned}$	$\begin{aligned} & 3.94 \\ & 3.94 \end{aligned}$	$\begin{aligned} & 16.43 \\ & 16.50 \end{aligned}$	
4	290	$\begin{gathered} 94 \\ \text { (red) } \end{gathered}$	Ethanol	$\underset{(253.31\}}{\mathrm{C}_{14} \mathrm{H}_{1} \mathrm{~N}_{3} \mathrm{~S}}$	$\begin{aligned} & 66.40 \\ & 66.45 \end{aligned}$	$\begin{aligned} & 4.35 \\ & 4.42 \end{aligned}$	$\begin{aligned} & 16.60 \\ & 16.71 \end{aligned}$	$\begin{aligned} & 12.65 \\ & 12.68 \end{aligned}$
53	250	$\begin{gathered} 86 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S} \\ (292.35) \end{gathered}$	$\begin{aligned} & 65.73 \\ & 65.77 \end{aligned}$	$\begin{aligned} & 4.14 \\ & 4.01 \end{aligned}$	$\begin{aligned} & 19.16 \\ & 19.10 \end{aligned}$	$\begin{aligned} & 10.97 \\ & 10.89 \end{aligned}$
5b	180	$\begin{gathered} 83 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\underset{(309.37)}{\mathrm{C}_{1}+\mathrm{H}_{1}: \mathrm{N}, \mathrm{OS}}$	$\begin{aligned} & 65.99 \\ & 66.12 \end{aligned}$	$\begin{aligned} & 4.89 \\ & 4.90 \end{aligned}$	$\begin{aligned} & 13.58 \\ & 13.56 \end{aligned}$	$\begin{aligned} & 10.36 \\ & 10.30 \end{aligned}$
5 c	160	$\begin{gathered} 48 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{11}-\mathrm{N}_{3} \mathrm{O}_{2} \mathrm{~S} \\ (339.40) \end{gathered}$	$\begin{aligned} & 63.69 \\ & 63.77 \end{aligned}$	5.05	12.38 12.30	$\begin{aligned} & 9.45 \\ & 9.50 \end{aligned}$
5 d	200	$\begin{gathered} 69 \\ \text { (red) } \end{gathered}$	Ethanol	$\mathrm{C}_{22} \mathrm{H}_{1}-\mathrm{N}_{3} \mathrm{OS}$	$\begin{aligned} & 71.13 \\ & 71.21 \end{aligned}$	$\begin{aligned} & 4.61 \\ & 4.60 \end{aligned}$	$\begin{aligned} & 11.31 \\ & 11.35 \end{aligned}$	$\begin{aligned} & 8.63 \\ & 8.65 \end{aligned}$
5 e	176	$\underset{(\text { red })}{82}$	Ethanol	$\underset{(450.34)}{\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{OS}}$	$\begin{aligned} & 58.67 \\ & 58.72 \end{aligned}$	$\begin{aligned} & 3.58 \\ & 3.60 \end{aligned}$	$\begin{aligned} & 9.33 \\ & 9.40 \end{aligned}$	$\begin{aligned} & 7.12 \\ & 7.13 \end{aligned}$
6 a	278	$\begin{gathered} 86 \\ \text { (red) } \end{gathered}$	Ethanol	$\underset{(310.36)}{\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}}$	$\begin{aligned} & 61.91 \\ & 61.96 \end{aligned}$	4.55	$\begin{aligned} & 18.05 \\ & 18.08 \end{aligned}$	$\begin{aligned} & 10.33 \\ & 10.36 \end{aligned}$
6b	280	$\begin{gathered} 80 \\ \text { (red) } \end{gathered}$	Ethanol	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{136} \mathrm{~N}_{4} \mathrm{OS} \\ (386.45) \end{gathered}$	$\begin{aligned} & 68.37 \\ & 68.42 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 14.50 \\ & 14.48 \end{aligned}$	$\begin{aligned} & 8.29 \\ & 8.30 \end{aligned}$
6 c	228	$\begin{gathered} 87 \\ \text { (red) } \end{gathered}$	Ethanol	$\mathrm{C}_{23} \mathrm{H}_{23}\left(\frac{N_{4}}{} \mathrm{O}_{2} \mathrm{~S}\right.$	$\begin{aligned} & 66.32 \\ & 66.42 \end{aligned}$	$\begin{aligned} & 4.84 \\ & 4.85 \end{aligned}$	$\begin{aligned} & 13.45 \\ & 13.50 \end{aligned}$	7.70
6 d	270	$\begin{gathered} 81 \\ \text { (orange) } \end{gathered}$	Ethanol	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{2}\left(\mathrm{~N}_{4} \mathrm{OS}\right. \\ (406.48) \end{gathered}$	$\begin{aligned} & 68.97 \\ & 69.20 \end{aligned}$	$\begin{aligned} & 5.03 \\ & 5.10 \end{aligned}$	$\begin{aligned} & 13.99 \\ & 14.22 \end{aligned}$	$\begin{aligned} & 8.01 \\ & 8.05 \end{aligned}$
6 e	250	$\stackrel{88}{\text { (red) }}$	Ethanol	$\underset{(428.49)}{\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}}$	$\begin{aligned} & 67.27 \\ & 67.25 \end{aligned}$	$\begin{aligned} & 4.79 \\ & 4.66 \end{aligned}$	$\begin{aligned} & 13.07 \\ & 13.12 \end{aligned}$	$\begin{aligned} & 7.48 \\ & 7.51 \end{aligned}$
7	170	$\begin{gathered} 91 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\underset{(348.41)}{\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}}$	$\begin{aligned} & 65.49 \\ & 65.63 \end{aligned}$	$\begin{aligned} & 4.63 \\ & 4.62 \end{aligned}$	$\begin{aligned} & 16.08 \\ & 16.19 \end{aligned}$	$\begin{aligned} & 9.20 \\ & 9.15 \end{aligned}$
10	220	$\begin{gathered} 73 \\ \text { (red) } \end{gathered}$	Ethanol	$\begin{gathered} \mathrm{C}_{1} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~N}_{1} \mathrm{~S}_{3} \\ (368.49) \end{gathered}$	$\begin{aligned} & 55.41 \\ & 55.47 \end{aligned}$	$\begin{aligned} & 3.28 \\ & 3.36 \end{aligned}$	$\begin{aligned} & 15.20 \\ & 15.26 \end{aligned}$	$\begin{aligned} & 26.10 \\ & 26.20 \end{aligned}$
11	160	$\begin{gathered} 54 \\ \text { (brown) } \end{gathered}$	Ethanol	$\underset{(540.66)}{\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{3}}$	$\begin{aligned} & 55.53 \\ & 55.62 \end{aligned}$	$\begin{aligned} & 4.47 \\ & 4.50 \end{aligned}$	$\begin{aligned} & 10.36 \\ & 10.47 \end{aligned}$	$\begin{aligned} & 17.79 \\ & 17.87 \end{aligned}$
12	250	$\begin{gathered} 80 \\ \text { (yellow) } \end{gathered}$	Prridine	$\underset{(458.53)}{\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}}$	$\begin{aligned} & 62.86 \\ & 62.92 \end{aligned}$	$\begin{aligned} & 3.96 \\ & 3.97 \end{aligned}$	$\begin{aligned} & 12.22 \\ & 12.20 \end{aligned}$	$\begin{aligned} & 13.98 \\ & 14.10 \end{aligned}$
13a	330	$\begin{gathered} 96 \\ \text { (yellow) } \end{gathered}$	Acetic acid	$\underset{(326.36)}{\mathrm{C}_{1} \cdot \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}}$	$\begin{aligned} & 63.73 \\ & 63.82 \end{aligned}$	$\begin{array}{r} 3.77 \\ 3.82 \end{array}$	$\begin{aligned} & 17.49 \\ & 17.56 \end{aligned}$	$\begin{aligned} & 10.00 \\ & 10.20 \end{aligned}$
13b	256	$\begin{aligned} & 90 \\ & \text { (yellow) } \end{aligned}$	Acetic acid	$\underset{(426.47)}{\mathrm{C}_{24} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}}$	$\begin{aligned} & 67.59 \\ & 67.66 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 4.18 \end{aligned}$	$\begin{aligned} & 13.14 \\ & 13.11 \end{aligned}$	$\begin{aligned} & 7.52 \\ & 7.48 \end{aligned}$
13c	242	$\begin{aligned} & 90 \\ & \text { (yellow) } \end{aligned}$	Acetic acid	$\underset{(410.47)}{\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{OS}}$	$\begin{aligned} & 70.22 \\ & 70.32 \end{aligned}$	$\begin{aligned} & 4.42 \\ & 4.35 \end{aligned}$	$\begin{aligned} & 13.65 \\ & 13.50 \end{aligned}$	7.81
14 a	256	$\begin{gathered} 82 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\mathrm{C}_{23} \mathrm{H}_{127}-\mathrm{N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$\begin{aligned} & 64.62 \\ & 64.72 \end{aligned}$	$\begin{array}{r} 4.00 \\ 4.08 \end{array}$	$\begin{aligned} & 16.38 \\ & 16.35 \end{aligned}$	$\begin{array}{r} 7.50 \\ 7.42 \end{array}$
14b	300	$\begin{gathered} 87 \\ \text { (orange) } \end{gathered}$	Ethanol $/ \mathrm{CHCl}_{3}$	$\begin{gathered} \mathrm{C}_{23} \mathrm{H}_{1(1)} \mathrm{N}_{5} \mathrm{OS} \\ (411.47) \end{gathered}$	$\begin{aligned} & 67.13 \\ & 67.12 \end{aligned}$	$\begin{aligned} & 4.16 \\ & 4.16 \end{aligned}$	$\begin{aligned} & 17.02 \\ & 17.15 \end{aligned}$	$\begin{array}{r} 7.79 \\ 7.82 \end{array}$
14c	230	$\begin{gathered} 90 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\underset{(439.48)}{\mathrm{C}_{22} \mathrm{H}_{1}-\mathrm{N}_{3} \mathrm{O}_{2} \mathrm{~S}}$	$\begin{aligned} & 65.59 \\ & 65.72 \end{aligned}$	$\begin{array}{r} 3.90 \\ 3.92 \end{array}$	$\begin{aligned} & 15.93 \\ & 16.10 \end{aligned}$	$\begin{aligned} & 7.29 \\ & 7.25 \end{aligned}$
16a	300	$\begin{gathered} 50 \\ \text { (white) } \end{gathered}$	Ethanol	$\underset{(276.29)}{\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}}$	$\begin{aligned} & 69.55 \\ & 69.62 \end{aligned}$	$\begin{aligned} & 4.38 \\ & 4.42 \end{aligned}$	$\begin{aligned} & 20.28 \\ & 20.28 \end{aligned}$	
16b	350	$\begin{gathered} 67 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\begin{gathered} \mathrm{C}_{1}+\mathrm{H}_{4}+\mathrm{N}_{4} \mathrm{O}_{2} \\ (306.31) \end{gathered}$	$\begin{aligned} & 66.65 \\ & 66.75 \end{aligned}$	$\begin{aligned} & 4.61 \\ & 4.60 \end{aligned}$	$\begin{aligned} & 18.29 \\ & 18.40 \end{aligned}$	
16c	334	$\begin{gathered} 40 \\ \text { (green) } \end{gathered}$	Ethanol	$\underset{(310.73)}{\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}}$	$\begin{aligned} & 61.84 \\ & 61.86 \end{aligned}$	$\begin{aligned} & 3.57 \\ & 3.56 \end{aligned}$	$\begin{aligned} & 18.03 \\ & 18.13 \end{aligned}$	
17a	238	$\begin{aligned} & 69 \\ & \text { (yellow) } \end{aligned}$	$\begin{aligned} & \text { Pet. ether } \\ & 60-80 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{13} \mathrm{H}_{2} \mathrm{NN}_{4} \\ & (304.38 \mathrm{j} \end{aligned}$	$\begin{aligned} & 74.97 \\ & 75.12 \end{aligned}$	$\begin{aligned} & 6.62 \\ & 6.60 \end{aligned}$	$\begin{aligned} & 18.41 \\ & 18.45 \end{aligned}$	
17b	130	$\begin{gathered} 73 \\ \text { (yellow) } \end{gathered}$	$\begin{aligned} & \text { Pet. ether } \\ & 60-80 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{1} \mathrm{~N}_{+} \mathrm{N}_{+} \\ & (312.36) \end{aligned}$	$\begin{aligned} & 76.90 \\ & 76.96 \end{aligned}$	5.16	$\begin{aligned} & 17.94 \\ & 17.90 \end{aligned}$	
19	244	$\begin{gathered} 91 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\begin{aligned} & \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6} \\ & (262.27) \end{aligned}$	$\begin{aligned} & 64.11 \\ & 64.15 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 3.85 \end{aligned}$	$\begin{aligned} & 32.04 \\ & 32.16 \end{aligned}$	
20	230	$\begin{gathered} 70 \\ \text { (yellow) } \end{gathered}$	Ethanol	$\underset{(496.52)}{\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{P}}$	$\begin{aligned} & 77.40 \\ & 77.40 \end{aligned}$	$\begin{aligned} & 5.07 \\ & 5.08 \end{aligned}$	$\begin{aligned} & 11.28 \\ & 11.21 \end{aligned}$	

Table 2. Spectral data of the synthesized compounds

Compd No.	$\mathrm{IR} / \nu_{\text {max }}\left(\mathrm{cm}^{-1}\right)$	${ }^{1} \mathrm{H} \operatorname{NMR}(\delta / \mathrm{ppm})$
2a	3100 (NH), 2220 (CEN).	$\mathrm{CF}_{3} \mathrm{COOD} ; 2.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.10-7.90$ (m, 7 H, Ar-H and ethylene protons), 8.00 (s, $1 \mathrm{H}, \mathrm{NH}$).
2 b	3350 (NH), $2210(\mathrm{C} \equiv \mathrm{N})$.	DMSO-d $62.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.90-7.80(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$, ethylene-H and NH$)$.
2 c	3120 (NH), 2220 (CEN).	$\mathrm{CF}, \mathrm{COOD}: 2.80$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $6.89-7.80$ (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene protons), 8.41 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$)
3	2210 (C引N).	DMSO-d $\mathrm{d}_{6} 2.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.10-7.70(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene-H).
4	3380 (NH), 2220 (CEN).	DMSO-d $\mathrm{d}_{6} 2.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.20-7.70$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene-H), 8.70 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$).
5a	$3450,3320\left(\mathrm{NH}_{2}\right), 2200(\mathrm{C} \equiv \mathrm{N})$.	DMSO-d <2.80 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.20 (broad, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.60-7.42$ (m, 7 H, Ar-H and ethylene- H)
5b	$3460,3340\left(\mathrm{NH}_{2}\right), 1660(\mathrm{C}=\mathrm{O})$.	$\mathrm{CDCl}_{3}: 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.30-7.80(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene-H).
5 c	3480, $3350\left(\mathrm{NH}_{2}\right), 1680(\mathrm{C}=0)$.	
5d	$3400,3330\left(\mathrm{NH}_{2}\right), 1620$ ($\mathrm{C}=\mathrm{O}$)	$\mathrm{CDCl}_{3}: 2.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.70-7.90(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene-H).
5 e	$3400,3280\left(\mathrm{NH}_{2}\right), 1670(\mathrm{C}=\mathrm{O})$.	
6a	$\begin{aligned} & 3400,3280,3100\left(\mathrm{NH}, \mathrm{NH}_{2}\right), \\ & 1670(\mathrm{C}=\mathrm{O}) . \end{aligned}$	DMSO, $2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.20-7.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$, ethylene protons and NH_{2})
6 b	$3450,3400\left(\mathrm{NH}_{2}\right), 1620(\mathrm{C}=\mathrm{O})$.	DMSO-d $5 ; 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.30-7.60(\mathrm{~m}, 12 \mathrm{H}$, Ar-H and ethylene- H$), 8.85(\mathrm{~s}$, IH, NH).
6	$3480,3320\left(\mathrm{NH}_{2}\right), 1630(\mathrm{C}=\mathrm{O})$.	$\mathrm{CDCl}_{3} ; 3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}_{,} \mathrm{OCH}_{3}\right), 7.05-7.60\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$, ethy lene- H and $\left.\mathrm{NH}_{3}\right)$, $8.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
$6 d$	$3480,3210\left(\mathrm{NH}_{2}\right), 1640(\mathrm{C}=\mathrm{O})$.	DMSO; $2.31,2.73\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 5.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.20-7.52(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene protons), $8.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$
6 e	$3450,3320\left(\mathrm{NH}_{2}\right), 1670(\mathrm{C}=\mathrm{O})$.	$\begin{aligned} & \mathrm{CF}_{3} \mathrm{COOD} ; 2.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.30-8.30(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H} \text { and ethylene-H), } \\ & 10.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) . \end{aligned}$
7	$\begin{aligned} & 2980(\mathrm{CH}-\mathrm{aliph}), 2200(\mathrm{C} \equiv \mathrm{~N}), \\ & 1620(\mathrm{C}=\mathrm{N}) . \end{aligned}$	DMSO-d $\mathrm{d}_{5}: 0.90\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.00\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.30-7.60(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene- H), $8.10(\mathrm{~s}, \mathrm{IH}, \mathrm{CH}=\mathrm{N})$.
10	$3460,3320(\mathrm{NH})$.	
11	2980 (CH-aliph), 1730 (C=O).	$\mathrm{CF}_{3} \mathrm{COOD} ; 1.50\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.10\left(\mathrm{~s}, 4 \mathrm{H}\right.$, two $\left.\mathrm{SCH}_{2}\right), 4.40\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{two} \mathrm{OCH}_{2}\right)$, $7.30-7.80(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethy lene- H$)$.
12	$3400(\mathrm{NH}), 1690(\mathrm{C}=\mathrm{O})$.	$\mathrm{CDCl}_{3} ; 2.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.10-7.40(\mathrm{~m}, 1 \mathrm{H}$, , Ar-H and ethylene- H$), 8.10(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$).
13a	$3400(\mathrm{NH}), 1640(\mathrm{C}=\mathrm{O})$.	DMSO, $2.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.10-7.60(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene protons), $8.03(\mathrm{~s}, 1 \mathrm{H}$, pyrimidineH), $8.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$
13b	1680 ($\mathrm{C}=\mathrm{O}$) .	$\mathrm{CF}_{3} \mathrm{COOD}: 3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}), 7.20-7.70(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene- H$), 8.70$ ($s, 1 \mathrm{H}$, pyrimidine- H).
13c	1680 ($\mathrm{C}=\mathrm{O}$) .	CF, COOD: $2.50,3.40\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 7.30-7.73(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene-H), $8.65(\mathrm{~s}, 1 \mathrm{H}$, pyrinidine-H).
14 a	1660 ($\mathrm{C}=\mathrm{O}$) .	$\mathrm{CF}_{3} \mathrm{COOD}: 2.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} 3), 7.10-7.80(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene-H).
14b	1675 ($\mathrm{C}=\mathrm{O}$).	$\mathrm{CF}_{3} \mathrm{COOD} ; 2.35,2.98\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 7.25-7.38$ ($\mathrm{m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene-H).
$1+\mathrm{c}$	1680 (C=O: broad)	DMSO-d $\mathrm{d}_{6} 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.20-7.60(\mathrm{~mm}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene protons)
16 a	$\begin{aligned} & 3330,3200\left(\mathrm{NH}_{2}\right), 2200(\mathrm{C} \equiv \mathrm{~N}), \\ & 1630(\mathrm{C}=\mathrm{O}) . \end{aligned}$	DMSO-d $\mathrm{d}_{6} 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.40-7.80(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.30$ (hump, 1H, NH).
16b	$\begin{aligned} & 3450,3190\left(\mathrm{NH}_{2}\right), 2200(\mathrm{C} \equiv \mathrm{~N}), \\ & 1650(\mathrm{C}=\mathrm{O}) . \end{aligned}$	DMSO-d $\mathrm{s}^{\prime} 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.7\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.90-7.60(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.10$ (hump, lH, NH).
16c	$\begin{aligned} & 3450,3400\left(\mathrm{NH}_{2}\right), 2200(\mathrm{C} \equiv \mathrm{~N}) \\ & 1660(\mathrm{C}=\mathrm{O}) . \end{aligned}$	
17a	$\begin{aligned} & 2950,2800 \text { (CH-aliph), } 2180 \\ & (\mathrm{C} \equiv \mathrm{~N}) . \end{aligned}$	$\mathrm{CDCl}_{3}: 1.60\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.10\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 6.90-7.34(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene protons)
17b	3200 (NH), 2200 (CङN).	DMSO-d d_{5} 2 $2.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.90-7.80(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ and ethylene- H) 8.40 (hump, $1 \mathrm{H}, \mathrm{NH})$.
19	2200 (C引N).	
20	2200 (CEN).	DMSO- $\mathrm{d}_{5}^{\prime} ; 2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.9-8.2(\mathrm{~m}, 22 \mathrm{H}$, Ar-H and ethylene-H).

4-Cyano-3-substituted amino-6-methyl-t-styryl-pyridazine derivatives ($17 \mathrm{a}, \mathrm{b}$): General procedure
A mixture of compound $\mathbf{3}$ (0.01 mole) and amino compound (0.012 mole) in dry benzene (30 mL) was heated under reflux for 0.5 h . The solid product was collected and
recrystallized from the proper solvent to give 17.
6-Methyl-7-styryl-tetrazolo[1,5-b]pyridazin-8-carbonitrile (19). A mixture of compound 3 (0.01 mole) and sodium azide (0.01 mole) in dimethylsulfoxide (10 mL) was heated under reflux for 1 h . then poured into ice water. The
solid product was collected and recrystallized from the proper solvent to give 19 .
4-Cyano-6-methyl-5-styryl-3-[(triphenylphosphoranili-den)-aminolpyridazine (20). A mixture of compound 19 (0.01 mole) and triphenylphosphine (0.01 mole) in dry benzene (50 mL) was heated under reflux for 1 h . After cooling, the precipitate product was obtained then filtered off and recrystallized from the proper solvent to give $\mathbf{2 0}$.

References

1. Purohit D. M.: Shah. V. H. Indion J. Chen. 1998. 37B(9). 956. [Chem. Abstr. 1999, $130(9): 110223 \mathrm{k}$].
2. Rohet. F.: Rubat. C.: Coudert. P: Albuisson. E.: Couquelet. J. Chem. Pharm. Bull. 1996. 4+. 980.
3. Takaya. M.: Sato. M. Fakugaki Zassha 1994. IH. 94.
4. Kornet, M. J.: Chu. J. J. Heterocyct. Chem. 1981. 18. 293.
5. Contreras. J.; Rival, Y. M.: Chayer. S.: Bourguignon. J.: Wemuth. C. G. J. Med. Chem. 1999. 42.730 .
6. Coudert. P.: Albuisson. E.: Boire. J. Y: Durous. E.: Bastide. P: Conquelet. J. Eur. J. Med. (Them. 1994. 29.471.
7. Yamaguchi. M.: Maruyama. N.: Koga. T.: Akima. K.: Kuroki. T.:

Hamana. M.: Ohi, N. Chent. Pharn. Bull. 1995. +3, 236.
8. Vartanyan, R. S:; Kazaryan. Zh. V.: Sheiranvan. M. A.; Agaronyan. A. S.: Stepanyan. N. O. Khim. Fom. Zh. 1996. 30. 29.
9. Ferrand. G.: Dumas. H.: Depin. T. C.: Chouvernac. G. Eur. J. Med. Chent. 1987. 22. 337.
10. Kamal El-Dean, A. M;' Radwan. Sh. M. Pharmazie 1998. 53. 839.
11. Kamal El-Dean. A. M.: Radwan, Sh. M.; Abdel-Moneam, M. I. AfmiadadLHI 1996. 466.387.
12. Radwan. Sh. M.: Kamal El-Dean. A. M. Phosphortis. Sulfur and Sificon 2000. 16t. 299.
13. Hussein, A. M:; Atalla. A. A.: Kamal El-Dean. A. M. Pharmazie 1995. $50(\mathrm{Hl} 2), 788$.
14. Radwan. Sh. M.; Kamal El-Dean. A. M. Phamazie 1997. 52 (H6). 483.
15. Druey. T.: Schmidt. P. Swiss 320 1957. 131. Apr. 30. [Chem. Abstr: 1958. 52.6416 d$]$.
16. Ho. Y. W., Wang, I. J. J. Heterocwc. Chent. 1995. $32,819$.
17. Hassan, S. M.: Emam, H. A.: Abdelall, M. M. J. Chem. Research (S) 2000. 544: ل. Chem. Research faf) 2000, 1301.
18. Kamal El-Dean. A. M. Monatshe fte fiw Chemie 1998. 129. 523.
19. El-Gaby. M. S. A.: Zahran. M. A.: Ismail. M. M. F.: Ammar. Y. A. IL-Farnaco 20MO. 55. 227.
20. Kappe. T. J. Heteroctcl. Chem. 1998. 35. 1111.

