DOI QR코드

DOI QR Code

Two New Correlations for Predicting Detonating Power of CHNO Explosives

  • Keshavarz, M.H. (Department of Chemistry, Malek-ashtar University of Technology) ;
  • Oftadeh, M. (Department of Chemistry, Malek-ashtar University of Technology)
  • Published : 2003.01.20

Abstract

For CHNO explosives, two new correlations of the form $P_{CJ}\;=\;8.7({\alpha}T_c')^{1/2}{\rho}_0^2-5\;and\;P_{CJ}\'=\'9.5({\alpha}T_c')^1/2{\rho}_0^2-9$ have been demonstrated, which relate detonation pressure, $P_{CJ}$; combustion temperature of the explosive in gas phase, $T_c$; combustion temperature of the explosive in crystalline state, $T_c'$; and the number of moles of gaseous products per unit weight of explosive, α; at initial density of the explosive, ${\rho}_0$. Experimental and semi-empirical PM3 procedures were used for the computation of $T_c$. Detonation pressures derived in this manner have a simple form without need to use computer code.

Keywords

References

  1. Cowperthwaite, M.; Zwisler, W. H. In TIGER Computer Program Documentation; Stanford Research Institute: SRI publication number 1973; p 2106.
  2. Abdualazeem, M. S. High Temp. High Press. 1998, 30, 387. https://doi.org/10.1068/htrt121
  3. Mader, C. L. Numerical Modeling of Explosives and Propellants,2nd Ed.; CRC Press: 1998; p 31.
  4. Mader, C. In Detonation Properties of Condensed Explosives Computed Using the Becker-Kistiakosky-Wilson Equation of State; Los Alamos Scientific Laboratory Report LA-2900, New Mexico, 1963.
  5. Kamlet, M. J.; Ablard, J. E. J. Chem. Phys. 1968, 48, 36. https://doi.org/10.1063/1.1667930
  6. Kamlet, M. J.; Dickinson, C. J. Chem. Phys. 1968, 48, 43. https://doi.org/10.1063/1.1667939
  7. Kamlet, M. J.; Jaccobs, S. J. J. Chem. Phys. 1968, 48, 23. https://doi.org/10.1063/1.1667908
  8. Gill, R.; Asaoka, L; Baroody, E. J. Energ. Mater. 1987, 5, 287. https://doi.org/10.1080/07370658708012356
  9. Politzer, P.; Murray, J. S.; Grice, M. E.; Sjoberg, P. In Chemistry of Energetic Materials; Olah, G. A.; Squire, D. R., Eds; Academic Press Inc: 1991; p 77.
  10. Stull, D. R.; Prohet, H. JANAF Thermochemical Tables, 2nd ed.;National Burea of Standard: NSRDS-NBS 37, Washington, 1971.
  11. Stewart, J. J. P. J. Comp. Chem. 1989, 10, 221. https://doi.org/10.1002/jcc.540100209
  12. Keshavarz, M. H.; Oftadeh, M. In Proceedings of the 28th International Pyrotechnics Seminar; Australia, 2001; p 417.
  13. Dobratz, B. M.; Crawford, P. C. LLNL Explosives Handbook, Properties of Chemical Explosives and Explosives Simulants; UCRL-52997 Change 2; Lawrence Livermore National Laboratory, University of California: 1985.
  14. Horninig, H. C.; Lee, E. L.; Finger, M.; Kurrie, J. E. In Proceedings of the Fifth Symposium (International) on Detonation; Office of Naval Research: ACR-184, Washington, DC, 1970; p 422.
  15. Kuznetsov, N. M.; Shevdov, K. K. Combust. Explos. Shock Waves1966, 2(4), 52. https://doi.org/10.1007/BF01261517

Cited by

  1. Investigation of the Various Structure Parameters for Predicting Impact Sensitivity of Energetic Molecules via Artificial Neural Network vol.31, pp.3, 2006, https://doi.org/10.1002/prep.200600030
  2. Simple determination of performance of explosives without using any experimental data vol.119, pp.1, 2003, https://doi.org/10.1016/j.jhazmat.2004.11.013
  3. Simple empirical method for prediction of impact sensitivity of selected class of explosives vol.124, pp.1, 2003, https://doi.org/10.1016/j.jhazmat.2005.05.009
  4. Calculation of detonation pressures of condensed CHNOF explosives vol.29, pp.1, 2003, https://doi.org/10.1080/02533839.2006.9671106
  5. The simplest method for calculating energy output and Gurney velocity of explosives vol.131, pp.1, 2003, https://doi.org/10.1016/j.jhazmat.2005.09.004
  6. Theoretical prediction of condensed phase heat of formation of nitramines, nitrate esters, nitroaliphatics and related energetic compounds vol.136, pp.2, 2006, https://doi.org/10.1016/j.jhazmat.2005.12.006
  7. A simple procedure for calculating condensed phase heat of formation of nitroaromatic energetic materials vol.136, pp.3, 2003, https://doi.org/10.1016/j.jhazmat.2006.01.016
  8. Determination of performance of non-ideal aluminized explosives vol.137, pp.1, 2003, https://doi.org/10.1016/j.jhazmat.2006.02.048
  9. Novel correlation for predicting impact sensitivity of nitroheterocyclic energetic molecules vol.141, pp.3, 2003, https://doi.org/10.1016/j.jhazmat.2006.07.046
  10. Detonation velocity of pure and mixed CHNO explosives at maximum nominal density vol.141, pp.3, 2007, https://doi.org/10.1016/j.jhazmat.2006.07.060
  11. New method for calculating densities of nitroaromatic explosive compounds vol.145, pp.1, 2003, https://doi.org/10.1016/j.jhazmat.2006.11.023
  12. Reliable estimation of performance of explosives without considering their heat contents vol.147, pp.3, 2003, https://doi.org/10.1016/j.jhazmat.2007.01.080
  13. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  14. DFT molecular orbital calculations of initial step in decomposition pathways of TNAZ and some of its derivatives with –F, –CN and –OCH3 groups vol.964, pp.1, 2003, https://doi.org/10.1016/j.comptc.2011.01.007
  15. Electronic properties and chemical bondings of C?H?N?O compounds vol.1116, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2016.03.054