DOI QR코드

DOI QR Code

Sol-Gel Transition in Di-(2-ethylhexyl) phthalate-Plasticized Poly(vinyl chloride)

  • Lee, Chang-Hyung (Department of Medical Devices & Radiation Health, Korea Food & Drug Administration) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Cho, Kil-Won (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kim, Seong-Hun (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Hahn, Ai-Ran (Biotechnology & Environmenttal Eng. Div., Agency for Technology & Standards)
  • Published : 2003.10.20

Abstract

The gelation for di-(2-ethylhexyl) phthalate (DEHP)-plasticized poly(vinyl chloride) was studied by measuring time-resolved small-angle X-ray scattering (SAXS) and a flow of the solutions in test tube. It was found that for the gelation there were three regimes. At Regime I, the solution rapidly changed to a gel, and the SAXS intensity showed a peak and the peak intensity increased, keeping the peak angle constant. Applying the SAXS intensity to the kinetic analysis of the liquid-liquid phase separation, it was revealed that the spinodal decomposition proceeded to develop a periodic length of 29.9 nanometer in size, a hydrogen-bonding-type association in polymer rich phase followed, and then it induced fast gelation rate. At Regime II, the gelation slowly occurred and the SAXS intensity was not observed, suggesting that a homogeneous gel network was formed by a hydrogen-bonding. At regime III, the solution was a homogeneous sol.

Keywords

References

  1. Jayakrishnan, A.; Sunny, M. C. Polymer 1996, 37, 5213. https://doi.org/10.1016/0032-3861(96)00501-0
  2. Kambia, K.; Dine, T.; Azar, R.; Gressier, B.; Luyckx, M.; Brunet,C. Int. J. Pharm. 2001, 229, 139. https://doi.org/10.1016/S0378-5173(01)00840-7
  3. Jacobson, M. S.; Kevy, S. V.; Parkman, R.; Wesolowski, J. S.Transfusion 1980, 20, 443. https://doi.org/10.1046/j.1537-2995.1980.20480260277.x
  4. Papaspyrides, C. D.; Duvis, T. Polymer 1990, 31, 1085. https://doi.org/10.1016/0032-3861(90)90256-X
  5. Kambia, K.; Dine, T.; Azar, R.; Gressier, B.; Luyckx, M.; Brunet,C. Int. J. Pharm. 2001, 229, 139. https://doi.org/10.1016/S0378-5173(01)00840-7
  6. Soenen, H.; Nerghmans, H. J. Polym. Sci.; Part B; Polym. Phys.1996, 34, 241. https://doi.org/10.1002/(SICI)1099-0488(19960130)34:2<241::AID-POLB4>3.0.CO;2-W
  7. Jujin, J. A.; Gisolf, J. H.; de Jong, W. A. Kollid Z. Z. Polym. 1973,251, 456. https://doi.org/10.1007/BF01499400
  8. Najeh, M.; Munch, J. P.; Guenet. Macromolecules 1992, 25, 7078. https://doi.org/10.1021/ma00051a058
  9. Yang, Y. C.; Geil, P. H. J. Macromole. Sci., Phys. 1987, B22, 980.
  10. Guerrero, S. J.; Keller, A. J. Macromole. Sci., Phys. 1981, B20,161.
  11. Guerrero, S. J.; Keller, A. J. Macromole. Sci., Phys. 1981, B20,167.
  12. Koberstein, J. K.; Morra, B.; Stein, R. S. J. Appl. Crystallogr. 1980, 13, 34. https://doi.org/10.1107/S0021889880011478
  13. Chan, J. W. J. Chm. Phys. 1965, 42, 93. https://doi.org/10.1063/1.1695731
  14. Hashimoto, T.; Kumaki, J.; Kawai, H. Macromolecules 1983, 16,641. https://doi.org/10.1021/ma00238a030
  15. Lee, H. S.; Kyu, T. Macromolecules 1990, 23, 459. https://doi.org/10.1021/ma00204a018
  16. Yang, Y. C.; Geil, P. H. J. Macromole. Sci., Phys. 1983, B20, 463.

Cited by

  1. Desalination of seawater with supported liquid membrane vol.1524, pp.None, 2003, https://doi.org/10.1088/1742-6596/1524/1/012142