DOI QR코드

DOI QR Code

DFT Studies on Hydrogen Bonding in Water Complexes of Amino-substituted Pyridine

아미노 치환 피리딘-물 착화합물의 수소결합에 대한 DFT 연구

  • Gab-Yong Lee (Department of Chemistry, Catholic Univeristy of Daegu) ;
  • Ok-Ju Kim (Department of Chemistry, Catholic Univeristy of Daegu)
  • 이갑용 (대구가톨릭 대학교 자연대학 화학과) ;
  • 김옥주 (대구가톨릭 대학교 자연대학 화학과)
  • Published : 2003.04.20

Abstract

Density Functional Theory(DFT) calculations are performed to estimate the hydrogen bonding interaction energies in pyridine-water and amino-substituted pyridine-water complexes. Some equilibrium properties are also obtained for these complexes at B3LYP/aug-cc-pVDZ level. It is shown that the amino substitution increases the proton affinity of pyridine and stabilizes the hydrogen bond. The degree of stabilization upon formation of the complex varies with the number and the position of the amino groups.

피리딘-물 착화합물을 포함한 아미노 치환 피리딘-물 착화합물의 수소결합 상호작용에너지를 조사하기 위하여 Density Functional Theory(DFT) 계산을 수행하였다. 아울러 피리딘 및 아미노 치환 피리딘 분자들의 몇가지 평형구조의 성질을 B3LYP/aug-cc-pVDZ 수준에서 구하였다. 그 결과 피리딘의 아미노 치환은 피리딘의 양성자 친화도를 증가시키고 수소결합을 안정화시킴을 알았다. 물과의 착화합물 형성에 따른 안정화 정도는 아미노기의 수와 치환 위치에 따라 변하였다.

Keywords

References

  1. Andon, R. J. L.; Cox, J. D. J. Chem. Soc. 1952, 4601. https://doi.org/10.1039/jr9520004601
  2. Cox, J. D. J. Chem. Soc. 1952, 4606. https://doi.org/10.1039/jr9520004606
  3. Abe, J.; Nakanishi, K.; Touhara, H. J. Chem. Thermodyn. 1978, 10, 483. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
  4. Marczak, W.; Giera, E. J. Chem. Thermodyn. 1988, 30, 241 https://doi.org/10.1063/1.479130
  5. Garland, C. W.; Nishigaki, K. J. Chem. Phys. 1976, 65,5298. https://doi.org/10.1063/1.464304
  6. Narayanan, T.; Prafulla, B. V.; Kumar, A.; Gopal, E. S. R. Ber. Bunsen-Ges. Phy. Chem. 1991, 95, 12. https://doi.org/10.1021/jp980708o
  7. Schneider, G. Z. Phys. Chem. Neue Folge. 1963, 37, 333. https://doi.org/10.1021/j100027a005
  8. Almasy, L.; Cser, L.; Jancso, G. Physica B, 2000, 276-278, 446. https://doi.org/10.1063/1.1329889
  9. Jeffrey, G. A. An Introduction to Hydrogen Bonding;Oxford University Press; New York, 1997.
  10. Scheiner, S. Hydrogen Bonding; Oxford University Press; New York, 1997. https://doi.org/10.1021/jp973142x
  11. Halgren, T. A. J. Comput. Chem. 1996, 17, 520. https://doi.org/10.1021/j100043a023
  12. Tsuzuki, S.; Uchimaru, T.; Matsumura, K.; Mikami, M.; Tanabe. K. J. Chem. Phys. 1999, 110, 11906. https://doi.org/10.1039/jr9520004606
  13. Becke, A. D. J Chem. Phys. 1993, 98, 1372. https://doi.org/10.1063/1.464304
  14. Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. A 1998, 102, 3782. https://doi.org/10.1021/jp980708o
  15. Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705. https://doi.org/10.1021/jp973142x
  16. Elstner, M.; Hobza, P.; Franenheim, T.; Suhai. S.; Kaxiras, E. J. Chem. Phys. 2001, 114, 5149. https://doi.org/10.1021/jp981259v
  17. Kieninger, M.; Suhai, S. J. Comput. Chem. 1996, 117,1508. https://doi.org/10.1021/jp981900t
  18. Lozynski, M.; Rusinska-Roszak, D. J, Phys. Chem. A1998, 102, 2899. https://doi.org/10.1021/jp982713y
  19. Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837. https://doi.org/10.1021/jp020059n
  20. Adamo, C,; Barone, V. In Recent Advances in Density Functional Methods; Chong, D. P., Ed.; World Scientific: Singapore, 1997: Part III.
  21. Guo, H.; Sirois, S.; Proynov, E. I.; Salahub, D. R. In Theoretical Treatments of Hydrogen Bonding; Hadzi, D., Ed.; Wiley: Chichester, 1997.
  22. Lozynski, M.; Rusiuska-Roszak, D.; Mack, H. G. J. Phys. Chem. A 1998, 102, 2899. https://doi.org/10.1021/jp973142x
  23. Chandra, A. K.; Nguyen, M. T.; Zeegers-Huyskens, T.J. Phys. Chem. A 1998, 102, 6010. https://doi.org/10.1016/0021-9614(78)90096-4
  24. Mo, O.; Janez, M. J. Phys. Chem. A 1998, 102, 8174. https://doi.org/10.1021/jp981900t
  25. Gu, J.; Leszczynski, J. J. Phys. Chem. A 1998, 103,2744. https://doi.org/10.1021/ja00299a024
  26. Niu, H.; Alexander, D. Mackerell, Jr. J. Phys. Chem. A2002, 106, 7820. https://doi.org/10.1021/jp020059n
  27. Kohn, W.; Sham, L. J Phys. Rev. 1965, A140, 1133. https://doi.org/10.1080/00268977000101561
  28. Atkins, P. W.; Friedman, R. S. Molecular Qunaturm Mechanics, Oxford Univ. Press; New York, 1997.
  29. Sahn, V., Density Functional Theory III., Springer: New York, 1996. https://doi.org/10.1016/0022-2860(74)85074-X
  30. Ostlund, N. HyperChem, Autodesk, Inc., Sausalito, CA, 1993. https://doi.org/10.1021/jp952944u
  31. Dewar, M. J. S.; Zoebish, E. J.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/jp994094e
  32. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A. Montgomery, J. A.; Raghavachari, H.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, Y.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, F.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Gaussian, Inc.; Pittsburgh PA, 1995.
  33. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1016/0022-2852(66)90139-1
  34. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am, Chem. Soc. 1985, 108, 3902.
  35. Sorensen, G. O.; Mahler, L.; Rastrup-Andersen, N. J. Mol. Struct. 1974, 20, 119. https://doi.org/10.1080/00387018008064043
  36. Wang, J.; Johnson, B. G.; Boyd, R. J.; Eriksson, L. K.J. Phys. Chem. 1996, 100, 6317. https://doi.org/10.1080/00268979500101161
  37. Papai I.; Gabor, J. J. Phys. Chem. A 2000, 104, 2132. https://doi.org/10.1080/00268979500101171
  38. Reed. A. E.; Curtiss, L. A.; Weinhold, F. Chem Rev.1988, 99, 899. https://doi.org/10.1021/jp981501y
  39. Takahashi, H.; Mamola, K.; Plyler, E. K. J. Mol. Spectrosc.1966, 21, 217. https://doi.org/10.1021/ja00852a002
  40. Kasende, O.; Zeegers-Huyskens, Th. Spectrosc. Lett.1980, 13, 493. https://doi.org/10.1016/0166-1280(89)85163-2
  41. Zoidis, E.; Yarwood, J.; Danten, Y.; Besnard, M.Mol. Phys. 1995, 85, 373. https://doi.org/10.1021/j100091a024
  42. Zoidis, E.; Yarwood, J.; Danten, Y.; Besnard, M. Mol. Phys. 1995, 85, 385. https://doi.org/10.1021/jp021519f
  43. Samanta, U.; Chakrabarti, P.; Chandrasekhar, J. J. Phys. Chem. A 1998, 102, 8964. https://doi.org/10.1063/1.433030
  44. Del Bene, J. E. J. Am. Chem. Soc. 1975, 97, 5330. https://doi.org/10.1021/ja00852a002
  45. Alagona, G.; Ghio, C.; Nagy, P. J. Mol. Struct. (THEOCHEM).1989, 187, 219. https://doi.org/10.1016/0166-1280(89)85163-2
  46. Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089. https://doi.org/10.1016/S0921-4526(99)01658-0
  47. Ahn, D. S.; Park, S. W.; Lee, S.; Kim, B. J. Phys. Chem. A. 2003, 107, 131. https://doi.org/10.1021/jp021519f

Cited by

  1. Water and alcohol(s): what's the difference? A proton NMR and DFT study of hetero-association with pyridine vol.21, pp.6, 2008, https://doi.org/10.1002/poc.1351