References
- Kordesch, K.; Simander, G. Fuel Cells and Their Applications;VCH: New York, 1996.
- Akiba, T.; Bennetto, H. P.; Stirling, J. L.; Tanaka, K Biotechnol. Lett. 1987, 9, 611. https://doi.org/10.1007/BF01033196
- Allen, R. M.; Bennetto, H. P. Appl. Biochem. Biotechnol. 1993, 39/40, 27. https://doi.org/10.1007/BF02918975
- Choi, Y.; Song, S.; Jung, S.; Kim, S. J. Microbiol. Biotechnol.2001, 11, 863.
- Kim, N.; Choi, Y.; Jung, S.; Kim, S. Biotechnol. Bioeng. 2000, 70, 109. https://doi.org/10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M
- Kim, H. J.; Hyun, M. S.; Chang, I. S.; Kim, B. H. J. Microbiol. Biotechnol. 1999, 9, 365.
- Roller, S. D.; Bennetto, H. P.; Delaney, G. M.; Mason, J. R.; Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984, 34B, 3.
- Bennetto, H. P.; Dew, M. E.; Stirling, J. L.; Tanaka, K. Chem. Indust. 1981, 7, 776.
- Bennetto, H. P.; Stirling, J. L. Chem. Indust. 1985, 21, 695.
- Delaney, G. M.; Bennetto, H. P.; Mason, J. R.; Roller, S. D.; Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984, 34B, 13.
- Kaiser, R. D.; London, E. Biochemistry 1998, 37, 8180. https://doi.org/10.1021/bi980064a
- Langner, M.; Hui, S. W. Chem. Phys. Lipids 1991, 60, 127. https://doi.org/10.1016/0009-3084(91)90035-A
- Wu, P.; Brand, L. Anal. Biochem. 1994, 218, 1. https://doi.org/10.1006/abio.1994.1134
- Deumie, M.; Baraka, M. E.; Quinones, E. J. Photochem. Photobiol. A 1995, 87, 105. https://doi.org/10.1016/1010-6030(94)03974-Y
- Kim, N.; Choi, Y.; Jung, S.; Kim, S. Bull. Korean Chem. Soc.2000, 21, 44.
- Won, M. S.; Shim, Y. B.; Park, S. M. Bull. Korean Chem. Soc.1992, 13, 680.
- Kim, S.; Jung, S. Bull. Korean Chem. Soc. 1997, 18, 1318.
- Blatt, E.; Sawter, W. H. Biochim. Biophys. Acta 1985, 822, 43. https://doi.org/10.1016/0304-4157(85)90003-6
- Bally, M. B.; Hope, M. J.; Van Echteld, C. J. A.; Cullis, P. R. Biochim. Biophys. Acta 1985, 812, 66. https://doi.org/10.1016/0005-2736(85)90522-X
Cited by
- Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture vol.50, pp.4, 2012, https://doi.org/10.1007/s12275-012-2135-0
- Simultaneous bioelectricity generation and decolorization of methyl orange in a two-chambered microbial fuel cell and bacterial diversity vol.21, pp.19, 2014, https://doi.org/10.1007/s11356-014-3071-9
- Simultaneous electricity production and removal of organics from synthetic wastewater in a continuous membrane less MFC: Effects of process parameters vol.34, pp.5, 2015, https://doi.org/10.1002/ep.12136
- Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell vol.37, pp.1, 2015, https://doi.org/10.1007/s10529-014-1649-4
- Conversion of waste to electricity in a microbial fuel cell using newly identified bacteria: Pseudomonas fluorescens vol.14, pp.8, 2017, https://doi.org/10.1007/s13762-017-1260-z
- Performance analysis of a double-chambered microbial fuel cell employing a low-cost sulfonated polystyrene proton exchange membrane vol.24, pp.11, 2018, https://doi.org/10.1007/s11581-018-2480-z
- on the Carbon Soot-coated Electrode with an Aid of Thionin vol.39, pp.6, 2018, https://doi.org/10.1002/bkcs.11483
- Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology vol.6, pp.3, 2006, https://doi.org/10.1002/elsc.200620121
- Effect of electron mediators on current generation and fermentation in a microbial fuel cell vol.76, pp.3, 2007, https://doi.org/10.1007/s00253-007-1038-1
- Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells vol.100, pp.3, 2008, https://doi.org/10.1002/bit.21786
- RVC as new carbon material for batteries vol.39, pp.5, 2009, https://doi.org/10.1007/s10800-009-9791-8
- Use of Carbon Nanoparticles for Bacteria Immobilization in Microbial Fuel Cells for High Power Output vol.156, pp.10, 2009, https://doi.org/10.1149/1.3190477
- Construction of Microbial Fuel Cells Using Thermophilic Microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius vol.25, pp.6, 2003, https://doi.org/10.5012/bkcs.2004.25.6.813
- Development of Bipolar Plate Stack Type Microbial Fuel Cells vol.27, pp.2, 2003, https://doi.org/10.5012/bkcs.2006.27.2.281
- Effect of Initial Carbon Sources on the Performance of a Microbial Fuel Cell Containing Environmental Microorganism Micrococcus luteus vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1591
- Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.168
- The Effect of Physico-chemically Immobilized Methylene Blue and Neutral Red on the Anode of Microbial Fuel Cell vol.17, pp.2, 2012, https://doi.org/10.1007/s12257-011-0493-9
- Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials. vol.34, pp.13, 2003, https://doi.org/10.1080/09593330.2013.813951
- Naphthoquinone glycosides for bioelectroanalytical enumeration of the faecal indicator Escherichia coli vol.9, pp.6, 2003, https://doi.org/10.1111/1751-7915.12373
- Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity vol.36, pp.4, 2003, https://doi.org/10.1016/j.biotechadv.2018.04.010
- Enhanced Removal of Azo Dye by a Bioelectrochemical System Integrated with a Membrane Biofilm Reactor vol.57, pp.48, 2003, https://doi.org/10.1021/acs.iecr.8b04725
- Chemical Characteristics of Electron Shuttles Affect Extracellular Electron Transfer: Shewanella decolorationis NTOU1 Simultaneously Exploiting Acetate and Mediators vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.00399
- Conductive Polymer-Exoelectrogen Hybrid Bioelectrode with Improved Biofilm Formation and Extracellular Electron Transport vol.5, pp.8, 2019, https://doi.org/10.1002/aelm.201900320
- Catechol-Based Capacitor for Redox-Linked Bioelectronics vol.1, pp.8, 2019, https://doi.org/10.1021/acsaelm.9b00272