DOI QR코드

DOI QR Code

Dynamic Behaviors of Redox Mediators within the Hydrophobic Layers as an Important Factor for Effective Microbial Fuel Cell Operation

  • Choi, Young-Jin (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Nam-Joon (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Sung-Hyun (Department of Chemistry & Bio/Molecular Informatics Center, Konkuk University) ;
  • Jung, Seun-Ho (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2003.04.20

Abstract

In a mediator-aided microbial fuel cell, the choice of a proper mediator is one of the most important factors for the development of a better fuel cell system as it transfers electrons from bacteria to the electrode. The electrochemical behaviors within the lipid layer of two representative mediators, thionin and safranine O both of which exhibit reversible electron transfer reactions, were compared with the fuel cell efficiency. Thionin was found to be much more effective than safranine O though it has lower negative formal potential. Cyclic voltammetric and fluorescence spectroscopic analyses indicated that both mediators easily penetrated the lipid layer to pick up the electrons produced inside bacteria. While thionin could pass through the lipid layer, the gradual accumulation of safranine O was observed within the layer. This restricted dynamic behavior of safranine O led to the poor fuel cell operation despite its good negative formal potential.

Keywords

References

  1. Kordesch, K.; Simander, G. Fuel Cells and Their Applications;VCH: New York, 1996.
  2. Akiba, T.; Bennetto, H. P.; Stirling, J. L.; Tanaka, K Biotechnol. Lett. 1987, 9, 611. https://doi.org/10.1007/BF01033196
  3. Allen, R. M.; Bennetto, H. P. Appl. Biochem. Biotechnol. 1993, 39/40, 27. https://doi.org/10.1007/BF02918975
  4. Choi, Y.; Song, S.; Jung, S.; Kim, S. J. Microbiol. Biotechnol.2001, 11, 863.
  5. Kim, N.; Choi, Y.; Jung, S.; Kim, S. Biotechnol. Bioeng. 2000, 70, 109. https://doi.org/10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M
  6. Kim, H. J.; Hyun, M. S.; Chang, I. S.; Kim, B. H. J. Microbiol. Biotechnol. 1999, 9, 365.
  7. Roller, S. D.; Bennetto, H. P.; Delaney, G. M.; Mason, J. R.; Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984, 34B, 3.
  8. Bennetto, H. P.; Dew, M. E.; Stirling, J. L.; Tanaka, K. Chem. Indust. 1981, 7, 776.
  9. Bennetto, H. P.; Stirling, J. L. Chem. Indust. 1985, 21, 695.
  10. Delaney, G. M.; Bennetto, H. P.; Mason, J. R.; Roller, S. D.; Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984, 34B, 13.
  11. Kaiser, R. D.; London, E. Biochemistry 1998, 37, 8180. https://doi.org/10.1021/bi980064a
  12. Langner, M.; Hui, S. W. Chem. Phys. Lipids 1991, 60, 127. https://doi.org/10.1016/0009-3084(91)90035-A
  13. Wu, P.; Brand, L. Anal. Biochem. 1994, 218, 1. https://doi.org/10.1006/abio.1994.1134
  14. Deumie, M.; Baraka, M. E.; Quinones, E. J. Photochem. Photobiol. A 1995, 87, 105. https://doi.org/10.1016/1010-6030(94)03974-Y
  15. Kim, N.; Choi, Y.; Jung, S.; Kim, S. Bull. Korean Chem. Soc.2000, 21, 44.
  16. Won, M. S.; Shim, Y. B.; Park, S. M. Bull. Korean Chem. Soc.1992, 13, 680.
  17. Kim, S.; Jung, S. Bull. Korean Chem. Soc. 1997, 18, 1318.
  18. Blatt, E.; Sawter, W. H. Biochim. Biophys. Acta 1985, 822, 43. https://doi.org/10.1016/0304-4157(85)90003-6
  19. Bally, M. B.; Hope, M. J.; Van Echteld, C. J. A.; Cullis, P. R. Biochim. Biophys. Acta 1985, 812, 66. https://doi.org/10.1016/0005-2736(85)90522-X

Cited by

  1. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture vol.50, pp.4, 2012, https://doi.org/10.1007/s12275-012-2135-0
  2. Simultaneous bioelectricity generation and decolorization of methyl orange in a two-chambered microbial fuel cell and bacterial diversity vol.21, pp.19, 2014, https://doi.org/10.1007/s11356-014-3071-9
  3. Simultaneous electricity production and removal of organics from synthetic wastewater in a continuous membrane less MFC: Effects of process parameters vol.34, pp.5, 2015, https://doi.org/10.1002/ep.12136
  4. Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell vol.37, pp.1, 2015, https://doi.org/10.1007/s10529-014-1649-4
  5. Conversion of waste to electricity in a microbial fuel cell using newly identified bacteria: Pseudomonas fluorescens vol.14, pp.8, 2017, https://doi.org/10.1007/s13762-017-1260-z
  6. Performance analysis of a double-chambered microbial fuel cell employing a low-cost sulfonated polystyrene proton exchange membrane vol.24, pp.11, 2018, https://doi.org/10.1007/s11581-018-2480-z
  7. on the Carbon Soot-coated Electrode with an Aid of Thionin vol.39, pp.6, 2018, https://doi.org/10.1002/bkcs.11483
  8. Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology vol.6, pp.3, 2006, https://doi.org/10.1002/elsc.200620121
  9. Effect of electron mediators on current generation and fermentation in a microbial fuel cell vol.76, pp.3, 2007, https://doi.org/10.1007/s00253-007-1038-1
  10. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells vol.100, pp.3, 2008, https://doi.org/10.1002/bit.21786
  11. RVC as new carbon material for batteries vol.39, pp.5, 2009, https://doi.org/10.1007/s10800-009-9791-8
  12. Use of Carbon Nanoparticles for Bacteria Immobilization in Microbial Fuel Cells for High Power Output vol.156, pp.10, 2009, https://doi.org/10.1149/1.3190477
  13. Construction of Microbial Fuel Cells Using Thermophilic Microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius vol.25, pp.6, 2003, https://doi.org/10.5012/bkcs.2004.25.6.813
  14. Development of Bipolar Plate Stack Type Microbial Fuel Cells vol.27, pp.2, 2003, https://doi.org/10.5012/bkcs.2006.27.2.281
  15. Effect of Initial Carbon Sources on the Performance of a Microbial Fuel Cell Containing Environmental Microorganism Micrococcus luteus vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1591
  16. Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.168
  17. The Effect of Physico-chemically Immobilized Methylene Blue and Neutral Red on the Anode of Microbial Fuel Cell vol.17, pp.2, 2012, https://doi.org/10.1007/s12257-011-0493-9
  18. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials. vol.34, pp.13, 2003, https://doi.org/10.1080/09593330.2013.813951
  19. Naphthoquinone glycosides for bioelectroanalytical enumeration of the faecal indicator Escherichia coli vol.9, pp.6, 2003, https://doi.org/10.1111/1751-7915.12373
  20. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity vol.36, pp.4, 2003, https://doi.org/10.1016/j.biotechadv.2018.04.010
  21. Enhanced Removal of Azo Dye by a Bioelectrochemical System Integrated with a Membrane Biofilm Reactor vol.57, pp.48, 2003, https://doi.org/10.1021/acs.iecr.8b04725
  22. Chemical Characteristics of Electron Shuttles Affect Extracellular Electron Transfer: Shewanella decolorationis NTOU1 Simultaneously Exploiting Acetate and Mediators vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.00399
  23. Conductive Polymer-Exoelectrogen Hybrid Bioelectrode with Improved Biofilm Formation and Extracellular Electron Transport vol.5, pp.8, 2019, https://doi.org/10.1002/aelm.201900320
  24. Catechol-Based Capacitor for Redox-Linked Bioelectronics vol.1, pp.8, 2019, https://doi.org/10.1021/acsaelm.9b00272