References
- Schaeffer, H. J.; Beauchamp, L.; De Miranda, P.; Elion, G .B.;Bauer, D. J.; Collins, P. Nature 1978, 272, 583. https://doi.org/10.1038/272583a0
- El Ashry, E. S. H.; El Kilany, Y. Acyclonucleosides: Part 1, 2, 3. inAdvances in Heterocyclic Chemistry; Academic Press: 1997; Vol,67, 68, 69.
- De Clercq, E.; Descamps, J.; De Somer, P.; Holy, A. Science 1978,200, 563. https://doi.org/10.1126/science.200.4341.563
- Martin, J. C.; Dvorak, C. A.; Smee, D. F.; Matthew, T. R.; Verheyden, J. P. H. J. Med. Chem. 1983, 26, 759. https://doi.org/10.1021/jm00359a023
- Smith,K. O.; Galloway, K. S.; Kennell, W. L.; Oglivie, K. K.; Radatus, B.K. Antomicrob. Agents Chemother. 1982, 22, 55. https://doi.org/10.1128/AAC.22.1.55
- Vandendriessche,F.; Snoeck, R.; Janssen, G.; Hoogmartens, J.; Van Aerschot, A.;De Clercq, E.; Herdwijn, P. J. Med. Chem. 1992, 35, 1458. https://doi.org/10.1021/jm00086a015
- Krenitsky, T. A.; Hall, W. W.; De Miranda, P.; Beauchamp, L. M.;Schaeffer, H. J.; Whiteman, P. D. Proc. Natl. Acad. Sci. USA 1984,81, 3209. https://doi.org/10.1073/pnas.81.10.3209
- Crumpacker, C. S. N. Engl. J. Med. 1996, 335, 721. https://doi.org/10.1056/NEJM199609053351007
- Hamzeh, F. M.; Lietman, P. S. Antimicrob. Agents. Chemother.1991, 35, 1818. https://doi.org/10.1128/AAC.35.9.1818
- Earnshaw, D. L.; Bacon, T. H.; Darlison, S. J.; Edmonds, K.;Perkins, R. M.; Vere Hodge, R. A. Antimicrob. Agents Chemother.1992, 36, 2747. https://doi.org/10.1128/AAC.36.12.2747
- Vere Hodge, R. A.; Sutton, D.; Boyd, M. R.; Harnden, M. R.;Jarvest, R. L. Antimicrob. Agents Chemother. 1989, 33, 1765. https://doi.org/10.1128/AAC.33.10.1765
- Arimilli, M. N.; Kim, C. U.; Dougherty, J.; Mulato, A.; Oliyai, R.;Shaw, J. P.; Cundy, K. C.; Bischofberger, N. Antiviral Chem.Chemother. 1997, 8, 557.
- Jeong, L. S.; Lee, Y. A.; Moon, H. R.; Chun, M. W. Nucleosides &Nucleotides 1998, 17, 1473. https://doi.org/10.1080/07328319808003481
- Ko, O. H.; Hong, J. H. Tetrahedron Lett. 2002, 43, 6399. https://doi.org/10.1016/S0040-4039(02)01384-9
- Hong, J. H.; Gao, M. Y.; Chu, C. K. Tetrahedron Lett. 1999, 40,231. https://doi.org/10.1016/S0040-4039(98)02324-7
- Lee, J. Y.; Oh, C. H.; Ko, O. H.; Hong, J. H. Nucleosides,Nucleotides & Nucleic Acids 2002, 21, 709. https://doi.org/10.1081/NCN-120015727
- Hossain, N.;Rozenski, J.; De Clercq, E.; Herdewjn, P. Tetrahedron 1996, 52,13655. https://doi.org/10.1016/0040-4020(96)00818-6
- Panzica, R. P.; Rousseau, R. J.; Robins, R. K.; Townsend, L. B.J. Am. Chem. Soc. 1972, 94, 4708. https://doi.org/10.1021/ja00768a045
- Rousseau, R. J.; Robins, R.K.; Townsend, L. B. J. Am. Chem. Soc. 1968, 90, 2661. https://doi.org/10.1021/ja01012a035
Cited by
- First Synthesis and Anti-HIV Evaluation of 4′-Methyl-Cyclopentanyl 9-Deazaadenosine vol.27, pp.10-11, 2008, https://doi.org/10.1080/15257770802341392
- Novel Synthesis and Anti-HIV Activity of 4′-Branched Exomethylene Carbocyclic Nucleosides Using a Ring-Closing Metathesis of Triene vol.27, pp.12, 2008, https://doi.org/10.1080/15257770802458246
- )-Fluorovinyl Nucleosides vol.27, pp.3, 2008, https://doi.org/10.1080/15257770701845170
- A Facile Synthesis and Anti-Avian Influenza Virus (H5N1) Screening of Some Novel Pyrazolopyrimidine Nucleoside Derivatives vol.29, pp.11-12, 2010, https://doi.org/10.1080/15257770.2010.529480
- Synthesis of Novel Difluoro-Cyclopropyl Guanine Nucleosides and Their Phosphonate Analogues as Potent Antiviral Agents vol.30, pp.11, 2011, https://doi.org/10.1080/15257770.2011.625374
- Synthesis and Conformation of Novel 4'-Fluorinated 5'-Deoxythreosyl Phosphonic Acid Nucleosides as Antiviral Agents vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4007
- Efficient Electrophilic Fluorination for the Synthesis of Novel 2′-Fluoro-3′-Methyl-5′-Deoxyphosphonic Acid Apiosyl Nucleoside Analogues vol.32, pp.10, 2013, https://doi.org/10.1080/15257770.2013.832774
- Synthesis and antiviral evaluation of novel open-chain analogues of neplanocin A vol.25, pp.3, 2006, https://doi.org/10.1080/15257770500544578
- Synthesis and antiviral evaluation of novel methyl branched cyclopropyl phosphonic acid nucleosides vol.28, pp.7, 2005, https://doi.org/10.1007/BF02977336
- Synthesis and Antiviral Evaluation of Novel Cyclopropyl Nucleosides, Phosphonate Nucleosides and Phosphonic Acid Nucleosides vol.339, pp.9, 2006, https://doi.org/10.1002/ardp.200600031
- Stereoselective Synthesis and Antiviral Activity of Novel 4′(α)-Hydroxymethyl and 6′(α)-Methyl Dually Branched Carbocyclic Nucleosides vol.25, pp.12, 2003, https://doi.org/10.5012/bkcs.2004.25.12.1812
- The First Synthesis of Dually Modified Southern-Mimicking Nucleoside: 4'-Methyl Branched and Bicyclo [3.1.0] Hexane Locked Nucleoside vol.25, pp.5, 2003, https://doi.org/10.5012/bkcs.2004.25.5.668
- Synthesis and Antiviral Evaluation of Novel Acyclic Nucleosides. vol.35, pp.8, 2003, https://doi.org/10.1002/chin.200408232
- Concise Synthesis and Antiviral Activity of Novel Unsaturated Acyclic Pyrimidine Nucleosides vol.24, pp.2, 2005, https://doi.org/10.1081/ncn-51913
- Simple Synthesis of Novel 1',4'-Dimethyl Branched Carbovir Analogues vol.26, pp.11, 2003, https://doi.org/10.5012/bkcs.2005.26.11.1767
- Synthesis and Antiviral Evaluation of Novel 5&vprime;-Norcarboacyclic Phosphonic Acid Nucleosides vol.25, pp.8, 2006, https://doi.org/10.1080/15257770600793927
- Synthesis of Novel Carbovir Analogue vol.27, pp.7, 2003, https://doi.org/10.5012/bkcs.2006.27.7.976
- Efficient Construction of Quaternary Carbon: Stereocontrolled Synthesis of Novel Abacavir Analogue vol.28, pp.9, 2003, https://doi.org/10.5012/bkcs.2007.28.9.1545
- Synthesis and Antiviral Evaluation of Novel 4′-Trifluoromethylated 5′-Deoxyapiosyl Nucleoside Phosphonic Acids vol.33, pp.12, 2014, https://doi.org/10.1080/15257770.2014.938753