Synthesis of Pyrrolo[2,3-b]quinolines by Palladium-catalyzed Heteroannulation

Moon Bae Gee, Won Jung Lee, and Eul Kgun Yum"
Department of Chemistry, Chungnam National Liniversity, Yusung, Daejeon 305-764. Korea
Received April 21. 2003

Abstract

Palladium-catalyzed heteroannulation of 2-amino-3-iodoquinoline derivatives and 1-trimethylsilyl internal alkynes provided highly regioselective pyrrolo[2,3-b]quinolines with trimethylsilyl group next to the nitrogen atom in the pyrrole ring.

Kcy Words : Pyrrolo[2,3-b]quinolines, Palladium, Internal alkynes, Heteroannulation

Introduction

Pytrolo[2.3-b]quinolines are chemically interesting molecules due to their structural similarity to furo[2.3-b]quinolines, which occur widely in natural biologically active products. ${ }^{1}$ 1'yrrolo[2,3-b]quinolines have also a wide variety of biological activities, including anti-inflammatory, anticonvulsant, antihypertensive, antipyretic, analgesic, anti-MDR, and anticancer activity. ${ }^{2}$ Many synthetic methods for pyrrolo $[2,3-b]-$ quinolines ${ }^{2:}$ have been reported. including pyrolysis of azepine derivatives, ${ }^{3}$ photolysis of 3-(2-aminobenzylidene)-pyrrolidin- $2(1 \mathrm{H})$-ones, ${ }^{4}$ cyclization of 2-chloro-3-(2-chloro-ethyl)-quinoline. ${ }^{5}$ cyclization of N -phenyl-3-aminopropiolamides, ${ }^{6}$ reaction of 3 -(lithiomethyl)quinoline with nitriles, ${ }^{7}$ and the aza-Wittigelectrocyclic ring-closure nitrene insertion process. ${ }^{8}$ However, only a few synthetic methods have been described for totally aromatic $1 H$-pyrrolo $[2,3-b] q u i n o l i n e s$ with limited substituents. ${ }^{7-4}$ Larock and coworkers reported a palladium-catalyzed intermolecular reaction of o-haloarylamine and internal alkynes to give indoles in one operation. ${ }^{10}$ The heteroannulation method could be an effective synthetic procedure for preparing a variety of heterocycles. ${ }^{11}$ Therefore, we applied the synthetic method to the synthesis of heterocyclic azaindoles ${ }^{12}$ and pyrrolo[$3,2-c$]quinolines. ${ }^{1.3}$ Here, we report the convenient synthesis of 2,3 -disubstituted pyrrolo[2,3-h]quinolines using palladium-catalyzed heteroannulation.

Results and Discussion

The 2 -chloro-3-iodoquinoline was prepared by regioselective lithiation of 2 -chloroquinoline with LDA followed by treatment with I_{2} as an electrophile to prepare starting materials for palladium-catalyzed heteroannulation. The substitution reaction of 2-chloro-3-iodoquinoline with the corresponding amines afforded N -alkyl or aryl 2-amino-3jodoquinolines in $70-80 \%$ yields. ${ }^{14}$ Initially, we optimized the reaction of 2-methylamino-3-iodoquinoline and 1 trimethylsilyl propyne with various palladium species and bases. The results are summarized in Table 1 . We first examined the effect of different palladium species on the product yield using KOAc as the base and DMF as the solvent. The reaction using $\mathrm{Pd}(\mathrm{dba})_{2}$ or $\mathrm{Pd}(\mathrm{OAc})_{2}$ as the

Table I. Optimization of palladium-catalyzed heteroannulation for pyrrolo $[2,3-b]$ quinolines

Fintry"	Palladium Source	Base	Ruaction time (h)	lsolated yiclds $(\%)$
1	$\mathrm{Pd}(\mathrm{dba})_{2}$	KOAc	14	65
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	KOAc	14	54
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$	KOAc	20	50
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	KOAc	10	65
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	LiOAc_{2}	10	75
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	10	50
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	10	60
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	10	67
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ct}_{3} \mathrm{~N}$	10	60

"Actual amounts of reagents used: 0.5 mmol aryl halide. 1.0 mmol alkyne. $0.5 \mathrm{mmol} \mathrm{I} . \mathrm{Cl}$. 0.025 mmol Pd source. I mol base. and 10 mI . of DMF.
palladium source provided the similar isolated yield, while $\mathrm{Pd}\left(\mathrm{P}^{\mathrm{P}} \mathrm{h}_{5}\right)_{2} \mathrm{Cl}_{2}$ and $\mathrm{Pd}\left(\mathrm{PP}_{3}\right)_{4}$ gave lower yields of the desired products (entries 1-4). We also examined the effect of different bases with $\mathrm{Pd}(\mathrm{OAc})_{2}$ as a palladium sources. The $\mathrm{Pd}(\mathrm{OAc})_{2}$ was selected due to stability of palladium in reaction medium. The reaction using LiOAc gave the best isolated yields among the examined six bases (entries 4-9). The maximum yield of the desired product was obtained under $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$. 1 equivalent of $\mathrm{LiCl}, 2$ equivalents of LiOAc, and 2 equivalents of alkyne in DMF at $110^{\circ} \mathrm{C}$.

The reactions using various 2 -amino- 3 -iodoquinolines and internal alkynes were examined under optimized reaction conditions to give diverse pyrrolo[2,3-b]quinolines. The results are summarized in lable 2. Previously, we found that the bulkiness of the substituents on the acetylene and the amine played a major role in determining the regioselectivity of alkyne insertion. The heteroaryl palladium intermediate usually added to the less hindered carbon of the internal alkyne. Heteroannulation using 1 -trimethylsilyl alkynes provided highly regioselective products with the trimethylsilyl group next to the nitrogen atom in the pyrrole ring (entries 1-7). By contrast, the reactions using l-phenyl-

Table 2. Synthesis of pyrolo[2.3-b]quinolines by palladium-catalyzed heteroamulation

Entry ${ }^{\text {a }}$	R_{1}	R_{2}	R_{3}	Isolated yield (\%)
1	Bn	$\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$	CH_{3}	65
2	Ph	$\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{5}$	CH_{3}	67
3	CH_{3}	$\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{5}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{3}$	72
4	CH_{3}	$\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{5}$	$\mathrm{CH}_{2} \mathrm{OH}$	63
5	CH_{3}	$\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{5}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	60
6	Bn	$\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$	Ph	65
7	Bn	$\left.\mathrm{Si}_{(\mathrm{CH}}^{3}\right)_{3}$	3-thiophene	57
8	Br	$\mathrm{CH}_{3}\left(\mathrm{CH}_{3}\right)$)	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}$	74
9	Bn	Ph	Ph	80
10^{5}	Ph	Ph	CH_{3}	$84(2: 1)$

"All reactions were run on a 0.5 mmol scale with 10 mL of DMF. ${ }^{\text {t The }}$ isomeric ratio of R_{2} and R_{3} was determined by H^{1} NMR spectroscopy.
propyne provided two regio-isomeric products (entry 10). The major isomer had a phenyl substituent next to the nitrogen atom in the pyrrole ring.

Conclusions

The palladium-catalyzed heteroannulation of 2-amino-3iodoquinoline derivatives with 1 -trimethylsilyl internal alkynes provided a convenient new route for the synthesis of various 1.2.3-trisubstituted pyrrolo[2.3-b]quinolines. Specially, the heteroannulation provided highly regioselective products with the trimethylsilyl group next to the nitrogen atom in the pyrrole ring. The 2-trimethylsilyl group of pyrrolo[2.3-b]quinolines could be transformed into another functional group to overcome selectivity problem of heteroanulation in unsymmetric alkynes.

Experimental Section

The infrared spectra were obtained on Jasco FT-IR 410 spectrometer. All ${ }^{l} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR Spectra were recorded on a varian 400 MHz spectrometer. Chemical shift are given as value with reference to tetramethylsilane (TMS) as an internal standard. The GC-MS spectra were obtained on a Shimazu QP 1000 GC-MS. Melting points were determined on Mut-TEM apparatus and are uncorrected. Microanalyses were performed by Chungnam national university with CE Instrument EA 1110. Products were purified by flash chromatography on 230-400 mesh ASTM 60 silicagel. All of bases. LiCl and palladium species were purchased from Aldrich Chemical Co . The other chemicals were used directly as obtained from conmercial sources unless otherwise noted.

Preparation of Starting Materials

2-Methylamino-3-iodoquinoline. ${ }^{14} n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 20 mL .50 mmol) was slowly added to a magnetically stirred solution of diisopropylamine (5.05 g .50 mmol)
in dry THF (125 mL) under N_{2} at $-78^{\circ} \mathrm{C}$. The solution of LDA was stirred at $-78^{\circ} \mathrm{C}$ for 1 h .2 -chloroquinoline $(8.2 \mathrm{~g}$. 50 mmol) in THF (25 mL) was added slowly to the reaction mixture at $-78^{\circ} \mathrm{C}$ and stirred for 4 h at the same temperature at $-78{ }^{\circ} \mathrm{C}$. The iodine solution (15.2 g .50 mL THF) was slowly added to a solution of lithiated 2 -chloroquinoline. The resulting solution was stirred for 2 h at $-78^{\circ} \mathrm{C}$ and allowed to warm to room temperature over 5 h . After removing the solvent under reduced pressure, the residue was extracted using $\mathrm{Et}_{2} \mathrm{O}$ and decolorized with saturated NaHSO_{3} aqueous solution. The organic layer was dried over MgSO_{4}. filtered. and concentrated. 2-Chloro-3-iodoquinoline ($10.8 \mathrm{~g} .75 \%$) was obtained by column chromatography with hexane/ethyl acetate ($10: 1$): mp: $145-146^{\circ} \mathrm{C}: \operatorname{IR}(\mathrm{KBr})$ 3050. 3030. 1610. 1575, 1560, 1545, $1485 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s} .1 \mathrm{H} . \mathrm{ArH}), 7.90-7.30(\mathrm{~m}, 4 \mathrm{H} . \mathrm{ArH}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.7,148.7 .146 .3,132.1$. 128.7. 128.2. 127.9. 126.8.84.7: Ms m/z (relative intensity): 289 ($\mathrm{M}^{-}, 38$). 254 (26), 128 (30), 106 (48), 91 (100), 65 (28).
2-Chloro-3-iodo-quinoline (1.4 g .4 .84 mmol) methylamine (40% aqueous solution. 10 mL), and ethanol (10 mL) were added to sealed tube and was reacted at $140^{\circ} \mathrm{C}$ for 10 h . The resulting mixture was extracted using ethyl acetate and water. The organic layer was dried over MgSO_{4}. filtered. and concentrated. 2-Methylamino-3-iodoquinoline ${ }^{1+2}(1.0 \mathrm{~g}$. 73%) was obtained by column cluromatography using hexane/ ethyl acetate ($10: 1$): mp: $84-85^{\circ} \mathrm{C}$: IR (KBr) $3420,3040$. 2990. 2950. 2900. 1615. 1595. 1555. $1525 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s} .1 \mathrm{H} . \mathrm{ArH}), 7.85-7.00(\mathrm{~m} .4 \mathrm{H} . \mathrm{ArH}) .5 .25$ (brs. $1 \mathrm{H}, \mathrm{NH}$), 3.15 (d, $3 \mathrm{H}, J=5.6 \mathrm{~Hz} . \mathrm{N}-\mathrm{CH}_{3}$): ${ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 154.2,146.4,139.8 .130 .0 .127 .1,126.4 .126 .3$. 124.9. 122.4. 29.4: $\mathrm{Ms} \mathrm{m} / \mathrm{z}$ (relative intensity): 284 ($\mathrm{M}^{-}, 38$). 155 (28). 125 (42). 106 (52). 91 (100). 65 (21): Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN} \mathrm{N}_{2}$: C. 42.28: H. 3.19: N. 9.86. Found: C. 42.35 : H.3.17: N. 9.84.

2-Benzylamino-3-iodoquinoline. This compound was prepared in 75% yields by the substitution of 2-chloro-3-iodo-quinoline with benzy lamine: mp : $179-180^{\circ} \mathrm{C}$: $\mathrm{IR}(\mathrm{KBr})$ $3397.3025 .1582 .1510 .694 \mathrm{~cm}^{-1} .{ }^{l} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{2}\right) \delta 8.35$ (s. $1 \mathrm{H}, \mathrm{ArH}$). $7.73-7.17$ (m. 9H. ArH), 5.55 (br s. $1 \mathrm{H}, \mathrm{NH}$). $4.81\left(\mathrm{~d} .2 \mathrm{H} . J=5.6 \mathrm{~Hz} . \mathrm{ArCH}_{2}\right):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.2$. 147.3 . $146.5 .129 .3,130.1,128.6 .127 .9 .127 .3,126.4$. 126.3. 125.0. 122.6. 83.2. 46.4. $\mathrm{Ms} \mathrm{m} / \mathrm{z}$ (relative intensity): $360\left(\mathrm{M}^{-}, 36\right) .231$ (29). 128 (28). 116 (33). 106 (100). 91 (48). 65 (28): Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2}$: C. 53.35 : H. 3.64 : N, 7.78. Found: C. 53.40: H, 3.60: N. 7.75.

2-Phenylamino-3-iodoquinoline. This compound was prepared in 70% yield by the substitution of 2 -chloro-3iodoquinoline with aniline: mp: $150-151^{\circ} \mathrm{C}$: IR (KBr) 3305. 3110. 1594. 1480. $908.700 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.43$ (s. $1 \mathrm{H}, \mathrm{ArH}$), $7.89-7.07$ (m. $10 \mathrm{H}, \mathrm{ArH} . \mathrm{NH}$): ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 150.2$. 147.1, 146.6. 140.0, 130.2, 128.8. 127.0, 126.2. 125.5. 123.6. 122.9. 119.5. 83.5: Ms m/z (relative intensity): $345\left(\mathrm{M}^{+} .100\right), 218(54), 109(43)$: Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{IN}_{2}$: C. 52.04: H. 3.20: N. 8.09. Found: C. 52.11: H. 3.18: N. 8.07.

Trimethyl-thiophen-3-ylethynyl-silane. 3-Iodo-thiophene $(2.1 \mathrm{~g} .10 .0 \mathrm{mmol}$) (trimethylsilyl)-acetylene (1.1 g .12 .0
mmol). and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(140 \mathrm{mg} .2 \mathrm{~mol} \%$) were added in 40 mL of $\mathrm{Et}_{3} \mathrm{~N}$. After stirring the mixture for 5 min . $\mathrm{CuI}(20$ $\mathrm{mg} .1 \mathrm{~mol} \%$) was added. The resulting solution was heated for 3 h at $50^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was allowed to cool to room temperature and the ammonium salt was removed by filtration. The solvent was removed under reduced pressure. and residue was purified by column chromatography. Trimethyl-thiophen-3-y lethynylsilane was obtained 90% yield as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.23-7.18(\mathrm{~m} .2 \mathrm{H}, \mathrm{ArH}) .7 .04$ (d. $1 \mathrm{H} . J=8.0 \mathrm{~Hz}$. $\mathrm{ArH}) .0 .48$ (s. $\left.9 \mathrm{H} . \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta 127.9$. 127.3. 126.6. 126.1, 69.9. 62.9, -0.1: $\mathrm{Ms} \mathrm{m} / \mathrm{z}$ (relative intensity): $180\left(\mathrm{M}^{+} .100\right), 97$ (52). 24 (14).

4-Trimethylsilyl-3-butyn-1-ol. $n-\mathrm{BuLi}$ (2.5 M in hexane. 80 mL .0 .2 mol) was added in 500 mL of THF at $-15^{\circ} \mathrm{C}$. 3-Butyn-1 $\mathrm{ol}(7.0 \mathrm{~g} .0 .1 \mathrm{~mol}$) was dissolved in 50 mL of THF and the solution was slowly added to n-butyllithium solution. Subsequently. chlorotrimethỵlsilane (24 g .0 .2 mol) was introduced over a period of 30 min with cooling at -15 ${ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 3 h at room temperature and poured into 100 mL of 10% acetic acid. The reaction mixture was stirred for lh at room temperature. and neutralized with aqueous sodium bicarbonate. Diethỵl ether was added to the reaction mixture, and organic layer was separated form aqueous layer. The organic layer was dried over magnesium sulfate and filtered. Diethyl ether was removed by evaporation in water bath and the residue was distilled through a 40 cm Vigreux column. giving the desired alcohol ($11 \mathrm{~g} .81 \%$): b.p $90^{\circ} \mathrm{C} / 25 \mathrm{mmHg}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 3.64$ (t. $2 \mathrm{H} . J=7.0 \mathrm{~Hz} . \mathrm{CH}_{2} \mathrm{O}$). 2.46 (t. $2 \mathrm{H} . J=7.0 \mathrm{~Hz}$. CH_{2}). 2.38 (br. $1 \mathrm{H}, \mathrm{OH}$), 0.12 (s. $9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 103.4,69.8,60.5 .23 .8,-0.1$: Ms m / z (relative intensity): $142\left(\mathrm{M}^{-} .100\right) .140(42) .125$ (22).
General Procedure of the palladium-catalyzed heteroannulation of internal alkynes. Palladium acetate (6 mg . 0.025 mmol) , $\mathrm{LiCl}(22 \mathrm{mg} .0 .5 \mathrm{mmol}) . \mathrm{LiOAc}(66 \mathrm{mg} .1 .0$ mmol). 2-methy lamino-3-iodoquinoline (142 mg .0 .5 mmol). l-trimethy lsilylpropyne (112 mg .1 .0 mmol) and DMF (10 mL) were added to a pressure tube equipped with a stirring bar. After heating the reaction mixture for 10 h at $110^{\circ} \mathrm{C}$. the resulting solution was diluted with ethyl acetate and washed with saturated aqueous ammonium chloride. The organic layer was dried over MgSO_{4}. filtered. and concentrated. The residue was purified by column clromatography using hexaneethyl acetate. 1,3-Dimethyl-2-trimethy lsilyl-py rrolo[2,3-b]quinoline ($100 \mathrm{mg}, 75 \%$) was obtained as a yellow solid: $\mathrm{mp}: 86-87^{\circ} \mathrm{C}$: $\mathrm{IR}(\mathrm{KBr}) 3059,2950,1606,1568,1441,1245$. $870.843 .749 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.28$ (s. $1 \mathrm{H} . \mathrm{ArH}$). $8.12(\mathrm{~d} .1 \mathrm{H} . J=8.0 \mathrm{~Hz} . \mathrm{ArH}) .7 .95(\mathrm{~d} .1 \mathrm{H} . J=8.0 \mathrm{~Hz} . \mathrm{ArH})$. 7.66-7.62 (m. 1H. ArH). 7.41-7.37 (m, 1H. ArH). 4.04 (s. $3 \mathrm{H} . \mathrm{NCH}_{3}$), 2.51 (s. $1 \mathrm{H} . \mathrm{ArCH}_{3}$). 0.52 (s. $\left.9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 151.8 .145 .7,140.8$. 128.4. 127.7. 127.7. 125.3. 124.0. 123.3. 122.2, 118.0. 31.5. 10.9. 1.1: $\mathrm{Ms} \mathrm{m} / \mathrm{z}$ (relative intensity): $268\left(\mathrm{M}^{-} .100\right.$), 253 (57). 209 (15). 195 (46). 126 (18): Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{2} \mathrm{~N}_{3}$ Si: C. 71.59: H. 7.51 : N. 10.44. Found: C. 71.64: H. 7.49: N. 10.39. The following compounds were obtained using the above general procedure.

1-Benzyl-3-methyl-2-trimethylsilylpyrrolo $[2,3-b]$ quinoline. This compound was obtained as a yellow solid in 65% yield from the reaction of 2-benzylamino-3-iodoquinoline with 1-trimetylsilyl-1-propyne: mp: 111-112 ${ }^{\circ} \mathrm{C}$: IR (KBr) 2920. 1605. 1494. 1130. $840 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.33$ (s. $1 \mathrm{H} . \mathrm{ArH}) .8 .02-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) .7 .62-7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$. 7.41-7.32 (m. 1H. ArH), 7.26-7.17 (m. 3H. ArH). 6.82-6.78 (m, $2 \mathrm{H}, \mathrm{ArH}$), $5.81\left(\mathrm{~s} .2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.55$ (s. $3 \mathrm{H}, \mathrm{ArCH}_{3}$), 0.26 (s. $\left.9 \mathrm{H} . \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.7 .145 .2$. 138.7. 128.3. 127.5. 127.4. 127.2. 126.8. 125.8. 124.9. 124.4. 121.5. 120.8. 116.7. 94.7. 46.0. 10.4. 0.3: Ms m/z (relative intensity): $344\left(\mathrm{M}^{+} .100\right), 271$ (22), 253 (50). 221 (40). 207 (35). 195 (24). 91 (86). 73 (31). 59 (35): Anal. Calc. for $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{Si}$: C. 76.70 : H. 7.02: N. 8.13. Found: C. 76.75: H. 7.04: N. 8.10.

3-Methyl-1-phenyl-2-trimethylsilylpyrrolo[2,3-b]quinoline. This compound was obtained as a yellow solid in 67% yield from the reaction of 2-phenylamino-3-iodoquinoline with l-trimetylsilyl-1-propyne: mp: 117-118 ${ }^{\circ} \mathrm{C}$: IR (KBr) 2925. 1632. 1536. 1451, 1138. $836 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.32$ (s. $1 \mathrm{H} . \mathrm{ArH}$). $7.98-7.93$ (m. $2 \mathrm{H}, \mathrm{ArH}$). $7.57-7.44$ (m. $6 \mathrm{H}, \mathrm{ArH}$). $7.38-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) .2 .52$ (s. $3 \mathrm{H}, \mathrm{ArCH}_{3}$). 0.14 (s. $\left.9 \mathrm{H} . \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{2}\right) \delta 146.0 .142 .0 .139 .8$. 129.6. 129.3, 129.0. 128.4. 128.2, 128.0. 127.6. 125.3. 124.4. 123.4. 122.7. 119.9. 11.3, 0.7. $\mathrm{Ms} \mathrm{m} / \mathrm{z}$ (relative intensity): 330 ($\mathrm{M}^{-}, 100$). 315 (67), 285 (27), 257 (17), 239 (40), 150 (65), 91 (14), 73 (24), 43 (41): Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Si}: \mathrm{C}$. 76.32: H. 6.71: N. 8.48. Found: C. 76.36: H. 6.74: N. 8.45.

3-Butyl-1-methyl-2-trimethylsilylpyrrolo[2,3-b]quinoline. This compound was obtained as a yellow solid in 72% yield from the reaction of 2-methylamino-3-iodoquinoline with 1-trimetylsily1-1-hexyne: $\mathrm{mp}: 96-97^{\circ} \mathrm{C}: \mathrm{IR}(\mathrm{KBr}) 3048$. 2950. 1610, 1553, 1440. 1238. 870. $752 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~s} .1 \mathrm{H} . \mathrm{ArH}) .8 .11(\mathrm{~d} .1 \mathrm{H} . J=8.0 \mathrm{~Hz} . \mathrm{ArH})$, $7.97(\mathrm{~d} .1 \mathrm{H} . J=8.0 \mathrm{~Hz} . \mathrm{ArH}) .7 .68-7.63(\mathrm{~m} .1 \mathrm{H} . \mathrm{ArH}) .7 .42-$ $7.35(\mathrm{~m} .1 \mathrm{H}, \mathrm{ArH}), 4.01\left(\mathrm{~s} .3 \mathrm{H} . \mathrm{NCH}_{3}\right), 2.51$ (t. $2 \mathrm{H} . J=6.8$ $\mathrm{Hz} . \mathrm{ArCH}_{2} \mathrm{CH}_{2}-$), 1.58-1.44 (m. 2H. $\mathrm{ArCH}_{2} \mathrm{CH}_{2}-$). 1.05-0.96 (m. $2 \mathrm{H} .-\mathrm{CH}_{2}$) 0.84 (t. $3 \mathrm{H} . J=7.2 \mathrm{~Hz} .-\mathrm{CH}_{2} \mathrm{CH}_{3}$) 0.07 (s. $\left.9 \mathrm{H} . \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 150.3. 145.7 .140 .8. 128.6. 127.6. 127.6, 125.3. 123.9. 123.3, 122.4. 117.8. 32.4. 18.7. 14.6. 10.1. 9.0. 1.0. $\mathrm{Ms} \mathrm{m} / \mathrm{z}$ (relative intensity): 310 ($\mathrm{M}^{-}, 100$). 281 (46). 253 (25), 209 (43), 195 (21). 126 (16): Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{Si}$: C. 73.49: H. 8.44: N. 9.02 . Found: C. 73.46: H. 8.40: N. 9.08.
(1-Methyl-2-trimethylsilanyl-pyrrolo[2,3-b]quinolin-3-yl)-methanol. This compound was obtained as a yellow solid in 63% yield from the reaction of 2-methylamino-3iodoquinoline with 3-trimetylsily1-2-propyl-1ol: mp : 81-82 ${ }^{\circ} \mathrm{C}: \mathrm{IR}(\mathrm{KBr}) 3305,3061,2940,1615,1460,1248,870,740$ $\mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{2}\right) \delta 8.26$ (s. 1H. ArH). 8.14 (d. $1 \mathrm{H} . J$ $=8.0 \mathrm{~Hz}, \mathrm{ArH}) .8 .01(\mathrm{~d} .1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}) .7 .69-7.64(\mathrm{~m}$. $1 \mathrm{H} . \mathrm{ArH}), 7.43-7.39(\mathrm{~m} .1 \mathrm{H} . \mathrm{ArH}), 4.75\left(\mathrm{~s} .2 \mathrm{H} . \mathrm{ArCH}_{2} \mathrm{OH}\right)$, 4.01 (s. $3 \mathrm{H}, \mathrm{NCH}_{3}$). 0.55 (s. $\left.9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.1,145.7 .140 .8 .128 .5,127.9 .127 .7 .125 .4$. $124.4,123.3,123.0,118.2,59.8,33.3,1.0: \mathrm{Ms} \mathrm{m} / \mathrm{z}$ (relative intensity): 284 ($\mathrm{M}^{+} .100$). 253 (61). 209 (25). 195 (41). 126 (23): Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}$ OSi: C. $67.56: \mathrm{H} .7 .09: \mathrm{N}$.

9.85. Found: C. 67.60: H. 7.13: N. 9.81

2-(1-Methyl-2-trimethylsilanyl-pyrrolo[2,3- b]quinolin-$3-\mathrm{y}$ l)-ethanol. This compound was obtained as a yellow solid in 60% yield from the reaction of 2 -methylamino-3iodoquinoline with 4-trimethylsilyl-3-butyn-1-ol: mp : 87-88 ${ }^{\circ} \mathrm{C}: \mathrm{IR}(\mathrm{KBr}) 3310.3065 .2890 .1632 .1520 .1252 .867 .788$. $735 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s} .1 \mathrm{H} . \mathrm{ArH}) .8 .15(\mathrm{~d}$. $1 \mathrm{H} . J=8.0 \mathrm{~Hz}, \mathrm{ArH}) .7 .98$ (d. $1 \mathrm{H} . J=8.0 \mathrm{~Hz}, \mathrm{ArH}) .7 .70-$ 7.66 (m, 1H. ArH). 7.42-7.39 (m, 1H. ArH). 4.68-4.63 (m. $2 \mathrm{H} . \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$) 4.05 (s. $3 \mathrm{H} . \mathrm{NCH}_{3}$). 2.71 (t. $2 \mathrm{H} . J=7.0$ $\mathrm{Hz} . \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$). 0.51 (s. $\left.9 \mathrm{H} . \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \bar{\delta} 152.2 .145 .8,140.8 .128 .6 .128 .0,127.7,125.4$. 124.4. 123.3. 122.8. 118.3, 58.5. 33.2. 23.6. 1.1: Ms m / z (relative intensity): 298 ($\mathrm{M}^{-} .57$). 253 (100), 209 (31). 195 (51). 126 (18): Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{OSi}$: C. 68.58: H. 7.43: N. 9.39. Found: C. 68.63: H. 7.41: N. 9.36.

1-Benzyl-3-phenyl-2-trimethylsilylpyrrolo [2,3-b]quinoline. This compound was obtained as a yellow solid in 65% yield from the reaction of 2-benzylamino-3-iodoquinoline with 1-trimethy lphenyl acety lene: mp: 114-115 ${ }^{\circ} \mathrm{C}$: IR (KBr) 3029. 2927. 1602, 1570, 1429. 1249, 845. $723 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{\mathrm{j}}\right) \delta 8.19(\mathrm{~s} .1 \mathrm{H}, \mathrm{ArH}) .8 .08(\mathrm{~d} .1 \mathrm{H} . J=8.0 \mathrm{~Hz}$. ArH). 7.85 (d. $1 \mathrm{H} . J=8.0 \mathrm{~Hz} . \mathrm{ArH}$). $7.62-7.14(\mathrm{~m}, 10 \mathrm{H}$. ArH). 6.95-6.93 (m, 2H, ArH). 5.94 (s. $2 \mathrm{H}, \mathrm{ArCH}_{2}$). 0.03 (s. $\left.9 \mathrm{H} . \mathrm{Si}\left(\mathrm{CH}_{3}\right)\right)_{\mathrm{j}}$): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 145.8 .142 .0 .139 .1$. 136.0. 131.8. 131.1. 129.2. 128.5. 128.5. 128.4. 128.3. 128.1. 127.8. 127.3. 126.9. 126.8, 126.1, 124.8. 122.7. 47.2. 0.8: Ms m / z (relative intensity): 406 ($\mathrm{M}^{-}, 100$). 333 (54). 315 (34), 216 (20). 91 (67), 73 (44), 65 (17). Anal. Calc. for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{Si}$: C. 79.76: H. 6.45: N, 6.89. Found: C. 79.82: H. 6.44: N 6.92.

1-Benzyl-3-thiophen-3-yl-2-trimethylsilylpyrrolo[2,3-b]quinoline. This compound was obtained as a yellow solid in 57% yield from the reaction of 2-benzylamino-3-iodoquinoline with trimethyl-thiophen-3-y lethynyl-silane: mp: 151$152^{\circ} \mathrm{C}: \mathrm{IR}(\mathrm{KBr}) 3026,2922.1598 .1562,1436.1240,747$. $718 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s} .1 \mathrm{H} . \mathrm{ArH}) .8 .05(\mathrm{dd}$. $1 \mathrm{H} . J=8.2 .0 .6 \mathrm{~Hz} . \mathrm{ArH}$). 7.89 (d. $1 \mathrm{H} . ~ J=8.2 \mathrm{~Hz}, \mathrm{ArH})$. 7.66-7.15 (m, 8H. ArH). 6.96-6.92 (m. 2H. ArH). 5.91 (s. $2 \mathrm{H} . \mathrm{ArCH}), 0.08$ (s. $\left.9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 150.9. 145.3, 141.8, 138.5. 135.3, 129.8, 127.8. 127.7. 127.4 . $127.3,126.3,125.8$. $125.5,124.4,124.2$. 123.6. 122.2. 122.0. 120.2, 46.4. $0.5: \mathrm{Ms} \mathrm{m} / \mathrm{z}$ (relative intensity): 412 ($\mathrm{M}^{+}, 100$), 328 (20). 253 (48). 221 (38), 207 (36). 195 (22). 91 (75), 59 (18): Anal. Calc. for $\mathrm{C}_{2} \mathrm{H}_{2} 4 \mathrm{~N}_{2} \mathrm{SSi}$ C. 72.77: H. 5.86: N. 6.79. Found: C. 72.82: H. 5.79: N 6.78

1-Benzyl-2,3-dipropylpyrrolo[2,3-b]quinoline. This compound was obtained as a yellow solid in 74% yield from the reaction of 2-benzylamino-3-iodoquinoline with 4octyne: mp : $129-130^{\circ} \mathrm{C}$: IR (KBr) 2959. 2870, 1486. 1242. $753 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s} .1 \mathrm{H} . \mathrm{ArH}) .8 .09(\mathrm{~d}$. $1 \mathrm{H} . J=8.2 \mathrm{~Hz}, \mathrm{ArH}) .7 .88(\mathrm{~d} .1 \mathrm{H} . J=8.2 \mathrm{~Hz}, \mathrm{ArH}) .7 .65-$ $7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) .7 .41-7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) .7 .25-7.15(\mathrm{~m} .5 \mathrm{H}$, ArH). $5.70\left(\mathrm{~s} .1 \mathrm{H} . \mathrm{ArCH}_{2}\right), 2.84-2.71$ (m. $2 \mathrm{H} . \mathrm{ArCH}_{2} \mathrm{CH}_{2}-$). 1.76-1.61 (m. 2H. ArCH $2 \mathrm{CH}_{2}-$), 1.06-0.95 (m. $3 \mathrm{H} .-\mathrm{CH}_{2} \mathrm{CH}_{3}$): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 150.2,144.8$. 137.9. 128.4, 128.2. 128.0. 127.9. 127.4, 127.2. 124.5. 124.4. 123.4. 122.1. 114.9.92.8. $53.5,26.7,26.6,25.6,24.7 .13 .3 .13 .0 . \mathrm{Ms} \mathrm{m} / \mathrm{z}$ (relative
intensity): 342 ($\mathrm{M}^{+} .75$). 299 (16). 256 (39). 165 (20). 154 (15). 127 (13). 91 (100). 65 (34): Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2}$: C. 84.17: H. 7.65: N. 8.18. Found: C. 84.12: H. 7.68: N 8.20.

1-Benzyl-2,3-diphenylpyrrolo[2,3-b]quinoline. This compound was obtained as a yellow solid in 80% y ield from the reaction of 2 -benzylamino-3-iodoquinoline with diphenylacetylene: mp : $219-220^{\circ} \mathrm{C}$: IR (KBr) 3050.1600. 1569. 1422. 1387. $788 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{2}\right) \delta 8.52$ (s. $1 \mathrm{H} . \mathrm{ArH}) .8 .14$ (d. $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}) .7 .92(\mathrm{~d} .1 \mathrm{H} . J=8.4$ $\mathrm{Hz} . \mathrm{ArH}$). 7.64-7.61 (m. 2H. ArH), 7.41-6.98 (m. 15 H . $\mathrm{ArH}) .5 .60\left(\mathrm{~s} .2 \mathrm{H} . \mathrm{ArCH}_{2}\right):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 150.2$. 145.5 . $141.4,138.5,134.1,131.6 .131 .2 .130 .9 .129 .6$. 128.6. 128.4, 128.3. 128.3. 128.2. 128.1. 127.7. 127.3. 127.0. 126.3. 126.0. 125.4. 122.9. 122.0. 46.0. Ms m/z (relative intensity): $410\left(\mathrm{M}^{+} .100\right), 333$ (41), 317 (60). 214 (11). 166 (17). 91 (77). 65 (18): Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{2} 2 \mathrm{~N}_{2}:$ C. 87.77: H. 5.40: N. 6.82. Found: C. 87.73: H. 5.42: N 6.85.

Acknowledgments. This work was supported by Korea Research Foundation Grant (KRF-2001-015-DP0330).

References

1. Katritzhy, R.; Rees. C. W. Comprehensive Heterocuclic Chemisty Pergamon Press: 1984: Vol 4. pp 988-992. and reterences cited therein.
2. (a) Khan. M. A.: Da Rocha. T. F. Heteroctcles 1977. 6. 1229 and references cited therein. (b) Smith, C. D.: Lawrence, D. S. WO Ol: 74790. 2001. (c) Fukuda, Y.: Tanioka, A. WO 0006571.2000.
3. Stringer, M. B.; Candeloro, V:; Bowie, J. H.: Prager, R. H.: Engelhardt. L. M.: White. A. H. J. Chem. Soc., Perkin Trans I 1984. 2529.
4. Zimmer. H.: Armbruster. D. C.: Khridia. S. P.: Lankin. D. C. Tetrahedron Lett. $1969,+6.4053$.
5. (a) Shanmugam, P; Thiruvengadam, T. K.; Ramakrishnan, V. T;; Synthesis 1976. 393. (b) Murugesan. M; Soundarajan. N.; Ramasamy. K.: Shanmugam. P. Symbesis 1979. 352.
6. Himbert. G.: Schwickerath. W.: Maas. G. Leibigs Am. Chen. 1985. 1398.
7. Davis, M. L.: Wakefield. B. J.; Wardell, J. A. Tetrohedron 1992. 48.939.
8. Molina. P;, Alcantra, J.: Lopez-Leonardo, C. Terahedron 1997. 53. 3281 .
9. Tanaka. T.: Inakuma. T.: Wagatsuma. M.: Iijima. I. J. Heteroçcic Chent 1972. 9. 1355
10. (a) Larock. R. C.; Yum. E. K. J. Am. Chem. Soc. 1991, 113. 6689 (b) Larock, R. C.; Yum. E. K.: Reffik, D. J. Org. Chem. 1998. 63. 7652.
11. (a) Larock. R. C. J. Organomet. Chem. 1999. 576. 111. (b) Larock. R. C. Pure and.Appl. Chem. 1999. 71. 1435. (c) Li. J. T.: Gribble. G. W. Palladim in Heteroctuchic Chemistry: Pergamon: 2000: pp 143-146.
12. (a) Park. S. S.: Choi, J.-K.; Yum, E. K.; Ha. D.-C. Tetrahedron Lett. 1998, 39. 627. (b) Chi. S. M.: Choi, J.-K.: Yum. E. K.: Chi. D. Y. Tetrahedron. Lett. 2000. 41. 919 . (c) Lee. M. S.: Yum. E. K. Bull. Koream Chem. Soc. 2002. 23.535.
13. (a) Kang. S. K.: Park. S. S.: Kim. S. S.: Choi. T.-K.: Yumn. E. K Tetrahedron Letl. 1999, t0. 4379. (b) Yum, E. K.; Kang, S. S.; Kim. S. S.: Choi. J.-K.: Cheon. H. G. Bioorg. Med. Chem. Lett. 1999. 9. 1819. (c) Kim. S. S.; Cheon. H. G.; Kang. S. K.; Yum, E. K.: Choi. T.-K. Heterocycles 1998. 48. 221
14. (a) Marsais. F.: Gogard. A.: Queguiner. G. J. Heteroctcic Chent. 1989. 26. 1589. (b) Queguiner. G. J. Heterocuchic Chent. 2000. 37. 615.
