DOI QR코드

DOI QR Code

Studies on the Analysis of Benzo(a)pyrene and Its Metabolites on Biological Samples by Using High Performance Liquid Chromatography/Fluorescence Detection and Gas Chromatography/Mass Spectrometry

  • Lee, Won (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University) ;
  • Shin, Hye-Seung (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology) ;
  • Hong, Jee-Eun (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University) ;
  • Pyo, Hee-Soo (Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology) ;
  • Kim, Yun-Je (Doping Control Center, Korea Institute of Science and Technology)
  • Published : 2003.05.20

Abstract

An analytical method the determination of benzo(a)pyrene (BaP) and its hydroxylated metabolites, 1-hydroxybenzo(a)pyrene (1-OHBaP), 3-hydroxybenzo(a)pyrene (3-OHBaP), benzo(a)pyrene-4,5-dihydrodiol (4,5-diolBaP) and benzo(a)pyrene-7,8-dihydrodiol (7,8-diolBaP), in rat urine and plasma has been developed by HPLC/FLD and GC/MS. The derivatization with alkyl iodide was employed to improve the resolution and the detection of two mono hydroxylated metabolites, 1-OHBaP and 3-OHBaP, in LC and GC. BaP and its four metabolites in spiked urine were successfully separated by gradient elution on reverse phase ODS $C_{18}$ column (4.6 mm I.D., 100 mm length, particle size 5 ㎛) using a binary mixture of MeOH/H₂O (85/15, v/v) as mobile phase after ethylation at 90 ℃ for 10 min. The extraction recoveries of BaP and its metabolites in spiked samples with liquid-liquid extraction, which was better than solid phase extraction, were in the range of 90.3- 101.6% in n-hexane for urine and 95.7-106.3% in acetone for plasma, respectively. The calibration curves has shown good linearity with the correlation coefficients (R²) varying from 0.992 to 1.000 for urine and from 0.996 to 1.000 for plasma, respectively. The detection limits of all analytes were obtained in the range of 0.01-0.1 ng/mL for urine and 0.1-0.4 ng/mL for plasma, respectively. The metabolites of BaP were excreted as mono hydroxy and dihydrodiol forms after intraperitoneal injection of 20 mg/kg of BaP to rats. The total amounts of BaP and four metabolites excreted in dosed rat urine were 3.79 ng over the 0-96 hr period from adminstration and the excretional recovery was less than 0.065% of the injection amounts of BaP. The proposed method was successfully applied to the determination of BaP and its hydroxylated metabolites in rat urine and plasma for the pharmacokinetic studies.

Keywords

References

  1. Konig, J.; Balfanz, E.; Funcke, W.; Romanowski, T. Anal. Chem. 1983, 55, 599. https://doi.org/10.1021/ac00255a004
  2. Grimmer, G.; Jacob, J.; Naujack, K.-W.; Dettbarn, G. Anal. Chem. 1983, 55, 892. https://doi.org/10.1021/ac00257a018
  3. Schuetzle, D.; Rilley, T. L.; Prater, T. J. Anal. Chem. 1982, 54, 265.
  4. International Agency for Research on Cancer, IARC; PolynuclearAromatic Compounds, Part 1. Chemicals, Environmental andExperimental Data; 1983; Vol. 32, p 211.
  5. International Agency for Research on Cancer, IARC; Monographson the Evaluation of the Carcinogenic Risk of Chemicals to Man;1972-PRESENT (Multivolume work); World Health Organization:Geneva, 1987; p S7 58.
  6. International Agency for Research on Cancer, IARC; Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man; 1972-PRESENT (Multivolume work); World Health Organization: Geneva, 1973; p V3 107.
  7. U.S. EPA., Drinking Water Criteria Document for PAH. Preparedby the Office of Health and Environmental Assessment; EnvironmentalCriteria and Assessment Office: Cincinnati, OH for theOffice of Water Regulations and Standards, Washington, DC.,1991.
  8. International Agency for Research on Cancer, IARC; Monographson the Evaluation of the Carcinogenic Risk of Chemicals to Man;1972-PRESENT (Multivolume work); World Health Organization:Geneva, 1983; p V32 216.
  9. Strickland, P.; Kang, D. Toxicology Letters 1999, 108(2-3), 191. https://doi.org/10.1016/S0378-4274(99)00089-2
  10. Lindstedt, G.; Sollenberg, J. Scand. J. Work Environ. Health 1982, 8, 1. https://doi.org/10.5271/sjweh.2503
  11. Van de Wiel, J. A. G.; Fijneman, P. H. S.; Duijf, C. M. F.; Anzion, R. B. M.; Theuws, J. L. G.; Bos, R. P. Toxicology 1993, 80, 103. https://doi.org/10.1016/0300-483X(93)90174-Q
  12. Lee, M. L.; Novotny, M. V.; Bartle, K. D. Analytical Chemistry of Polycyclic Aromatic Compounds 1981, 70.
  13. Weeks, S. J.; Gilles, S. M.; D'Silva, A. P. Appl. Spectroscopy 1991, 45(7), 1093. https://doi.org/10.1366/0003702914336066
  14. Bouchard, M.; Viau, C. Arch. Toxicol. 1995, 69, 540. https://doi.org/10.1007/s002040050209
  15. VanOrden, S. L.; Malcomson, M. E.; Buckner, S. W. Anal. Chim. Acta 1991, 246, 199. https://doi.org/10.1016/S0003-2670(00)80677-7
  16. Barcelo, D. Anal. Chim. Acta 1992, 263, 1. https://doi.org/10.1016/0003-2670(92)85420-B
  17. Elchelberger, J. W.; Kerns, E. H.; Olynyk, P.; Buddle, W. L. Anal. Chem. 1983, 55, 1471. https://doi.org/10.1021/ac00260a007
  18. Areise, F.; Verkeik, M.; Hoornweg, G. P.; Vandenesse, R. J.; Ukemaleenstra, S. R.; Hofstraat, J. W.; Gooijer, C.; Velthorst, N. H. J. Anal. Toxicol. 1994, 18, 195. https://doi.org/10.1093/jat/18.4.195
  19. Bouchard, M.; Viau, C. Can. J. Physiol. Pharmacol. 1997, 75(3), 185. https://doi.org/10.1139/cjpp-75-3-185
  20. Jongeneelen, F. J.; Anzion, R. B.; Henderson, P. T. J. Chromatogr. 1987, 413, 227. https://doi.org/10.1016/0378-4347(87)80230-X
  21. Ariese, F. J. Anal. Toxicol. 1994, 18(4), 195. https://doi.org/10.1093/jat/18.4.195
  22. Vock, E. H.; Wolfe, A. R.; Meehan, T. Mutation Research/Fundamental and Molecilar Mechanisms of Mutapenesis 2001, 478(1-2), 199. https://doi.org/10.1016/S0027-5107(01)00153-1
  23. Quilliam, M. A.; Sim, P. G. J. Chromatogr. Sci. 1988, 26, 160. https://doi.org/10.1007/BF02268143
  24. Chen, S. H.; Evans, C. E.; McGuffin, V. L. Anal. Chim. Acta 1991, 246, 65. https://doi.org/10.1016/S0003-2670(00)80665-0
  25. Gundel, J.; Angerer, J. J. Chromatogr. B 2000, 47.
  26. Ramesh, A. Experimental and Toxicologic Pathology 2001, 53(4), 275. https://doi.org/10.1078/0940-2993-00192
  27. Strickland, P. T.; Kang, D.; Bowman, E. D.; Fitzwillam, A.; Downing, T. E.; Rothman, N.; Groopman, J.; Weston, A. Carcinogenesis 1994, 15(3), 483. https://doi.org/10.1093/carcin/15.3.483
  28. Weeks, S. J.; Gilles, S. M.; D'Silvia, A. P. Appl. Spectrosc. 1991, 45(7), 1093. https://doi.org/10.1366/0003702914336066

Cited by

  1. Review on proteomic analyses of benzo[a]pyrene toxicity vol.12, pp.11, 2012, https://doi.org/10.1002/pmic.201100466
  2. Benzo(a)pyrene induced structural and functional modifications in lung cystatin vol.185, pp.10, 2013, https://doi.org/10.1007/s10661-013-3150-2
  3. Understanding the linked kinetics of benzo(a)pyrene and 3-hydroxybenzo(a)pyrene biomarker of exposure using physiologically-based pharmacokinetic modelling in rats vol.40, pp.6, 2013, https://doi.org/10.1007/s10928-013-9338-9
  4. Development of a Method to Detect Three Monohydroxylated Polycyclic Aromatic Hydrocarbons in Human Urine by Liquid Chromatographic Tandem Mass Spectrometry vol.2015, pp.2090-8873, 2015, https://doi.org/10.1155/2015/514320
  5. Determination of 3-OHB[a]P and (+)-anti-BPDE in Rats Blood and Brain Tissue of B[a]P Exposure by HPLC with Fluorescence Detection vol.78, pp.9-10, 2015, https://doi.org/10.1007/s10337-015-2890-2
  6. Polycyclic Aromatic Hydrocarbon Residues in Serum Samples of Autopsied Individuals from Tennessee vol.12, pp.1, 2014, https://doi.org/10.3390/ijerph120100322
  7. Fragmentations and Proton Transfer Reactions of Product Ions Formed from Mono-, Di-, and Triethanolamines vol.25, pp.10, 2003, https://doi.org/10.5012/bkcs.2004.25.10.1538
  8. Substituent Effect on Fragmentations and Ion-Molecule Reactions of Ionized Alkyn Alcohols vol.26, pp.4, 2005, https://doi.org/10.5012/bkcs.2005.26.4.609
  9. Proton Transfer Reactions and Ion-Molecule Reactions of Ionized XCH2CH2Y (X and Y = OH or NH2) vol.27, pp.4, 2003, https://doi.org/10.5012/bkcs.2006.27.4.539
  10. Effects of intravenous benzo[a]pyrene dose administration on levels of exposure biomarkers, DNA adducts, and gene expression in rats. vol.78, pp.3, 2003, https://doi.org/10.1080/15287394.2014.954072
  11. Kinetics of Diol and Hydroxybenzo[a]pyrene Metabolites in Relation to DNA Adduct Formation and Gene Expression in Rats vol.78, pp.12, 2015, https://doi.org/10.1080/15287394.2015.1028119