DOI QR코드

DOI QR Code

Metal-Insulator Transition Induced by Short Range Magnetic Ordering in Mono-layered Manganite

  • Chi, E.O. (Center for CMR Materials, Korea Research Institute of Standards and Science) ;
  • Kim, W.S. (Center for CMR Materials, Korea Research Institute of Standards and Science) ;
  • Hong, C.S. (Center for CMR Materials, Korea Research Institute of Standards and Science) ;
  • Hur, N.H. (Center for CMR Materials, Korea Research Institute of Standards and Science) ;
  • Choi, Y.N. (Neutron Physics Department, HANARO center, Korea Atomic Energy Research Institute)
  • Published : 2003.05.20

Abstract

The structural, magnetic, and transport properties of a mono-layered manganite $La_{0.7}Sr_{1.3}MnO_{4+{\delta}}$ were investigated using variable temperature neutron powder diffraction as well as magnetization and transport measurements. The compound adopts the tetragonal I4/mmm symmetry and exhibits no magnetic reflection in the temperature region of 10 K ≤ T ≤ 300 K. A weak ferromagnetic (FM) transition occurs about 130 K, which almost coincides with the onset of a metal-insulator (M-I) transition. Extra oxygen that occupies the interstitial site between the [(La,Sr)O] layers makes the spacing between the [MnO₂] layers shorten, which enhances the inter-layer coupling and eventually leads to the M-I transition. We also found negative magneto resistance (MR) below the M-I transition temperature, which can be understood on the basis of the percolative transport via FM metallic domains in the antiferromagnetic (AFM) insulating matrix.

Keywords

References

  1. Jin, S.; Tiefel, T. H.; McCormack, M.; Fastnacht, R. A.; Ramesh, R.; Chen, L. H. Science 1994, 264, 413. https://doi.org/10.1126/science.264.5157.413
  2. Kimura, T.; Tokura, Y. Annu. Rev. Mater. Sci. 2000, 30, 451. https://doi.org/10.1146/annurev.matsci.30.1.451
  3. Battle, P. D.; Green, M. A.; Laskey, N. S.; Millburn, J. E.; Radaelli, P. G.; Rosseinsky, M. J.; Sullivan, S. P.; Vente, J. F. Phys. Rev. B 1996, 54, 15967. https://doi.org/10.1103/PhysRevB.54.15967
  4. Mitchell, J. F.; Argyriou, D. N.; Jorgensen, J. D.; Hinks, D. G.; Potter, C. D.; Bader, S. D. Phys. Rev. B 1997, 55, 63. https://doi.org/10.1103/PhysRevB.55.63
  5. Moritomo, Y.; Asamitsu, A.; Kuwahara, H.; Tokura, Y. Nature 1996, 380, 141. https://doi.org/10.1038/380141a0
  6. Bao, W.; Chen, C. H.; Carter, S. A.; Cheong, S.-W. Solid State Commun. 1996, 98, 55. https://doi.org/10.1016/0038-1098(95)00786-5
  7. Sternlieb, B. J.; Hill, J. P.; Wildgruber, U. C.; Luke, G. M.; Nachumi, B.; Moritomo, Y.; Tokura, Y. Phys. Rev. Lett. 1996, 76, 2169. https://doi.org/10.1103/PhysRevLett.76.2169
  8. Moritomo, Y.; Tomioka, T.; Asamitsu, A.; Tokura, Y. Phys. Rev. B 1995, 51, 3297. https://doi.org/10.1103/PhysRevB.51.3297
  9. Maignan, A.; Martin, C.; Van Tendelo, G.; Hervieu, M.; Raveau, B. J. Mater. Chem. 1998, 8, 2411. https://doi.org/10.1039/a805393f
  10. Uehara, M.; Mori, S.; Chen, C. H.; Cheong, S.-W. Nature 1999, 399, 560. https://doi.org/10.1038/21142
  11. Dho, J.; Kim, W. S.; Choi, H. S.; Chi, E. O.; Hur, N. H. Solid StateCommun. 2001, 117, 517. https://doi.org/10.1016/S0038-1098(00)00512-3
  12. Roisnel, T.; Rodriguez-Carvajal, J. Program: Fullprof; LLBLCSIM:France, March, 2000.
  13. Argyriou, D. N.; Mitchel, J. F.; Potter, C. D.; Bader, S. D.; Kleb,R.; Jorgensen, J. D. Phys. Rev. B 1997, 55, R11965. https://doi.org/10.1103/PhysRevB.55.R11965
  14. Ibarra, M. R.; Algarabel, P. A.; Marquina, C.; Blasco, J.; Garcia, J.Phys. Rev. Lett. 1995, 75, 3541. https://doi.org/10.1103/PhysRevLett.75.3541
  15. Kim, W. S.; Chi, E. O.; Kim, J. C.; Choi, H. S.; Hur, N. H. SolidState Commun. 2001, 119, 507. https://doi.org/10.1016/S0038-1098(01)00279-4
  16. Chi, E. O.; Hong, K. P.; Kwon, Y.-U.; Raju, N. P.; Greedan, J. E.;Lee, J. S.; Hur, N. H. Phys. Rev. B 1999, 60, 12867. https://doi.org/10.1103/PhysRevB.60.12867
  17. Li, R. K.; Greaves, C. J. Solid State Chem. 2000, 153, 34. https://doi.org/10.1006/jssc.2000.8735
  18. Hong, C. S.; Kim, W. S.; Chi, E. O.; Hur, N. H.; Choi, Y. N. Chem. Mater. 2002, 14, 1832. https://doi.org/10.1021/cm0115618
  19. Hong, C. S.; Kim, W. S.; Hur, N. H.; Choi, Y. N. J. Am. Chem. Soc., submitted.
  20. De Gennes, P. G. Phys. Rev. 1960, 118, 141. https://doi.org/10.1103/PhysRev.118.141
  21. Hur, N. H.; Kim, J.-T.; Yoo, K. H.; Park, Y. K.; Park, J. C.; Chi, E. O.; Kwon, Y.-U. Phys. Rev. B 1998, 57, 10740. https://doi.org/10.1103/PhysRevB.57.10740
  22. Kim, W. S.; Chi, E. O.; Choi, H. S.; Yi, H. S.; Hur, N. H.; Kim, J.-T.; Kim, Y. I.; Lee, K. W.; Park, Y. K. J. Korean Phys. Soc. 2001, 38, 29.
  23. Hur, N. H.; Chi, E. O.; Kwon, Y.-U.; Yu, J.; Kim, J.-T.; Park, Y. K.; Park, J. C. Solid State Commun. 1999, 112, 61. https://doi.org/10.1016/S0038-1098(99)00315-4
  24. Kim, W. S.; Choi, H. S.; Nam, B. C.; Chi, E. O.; Hur, N. H. Phys. Status Solidi: Condensed Matter 2001, 185, 401
  25. Bader, S. D.; Osgood III, R. M.; Miller, D. J.; Mitchel, J. F.; Jiang,J. S. J. Appl. Phys. 1998, 83, 6385. https://doi.org/10.1063/1.367906
  26. Kim, K. H.; Uehara, M.; Hess, C.; Sharma, P. A.; Cheong, S.-W.Phys. Rev. Lett. 2000, 84, 2961. https://doi.org/10.1103/PhysRevLett.84.2961
  27. Chandrasekaran, K.; Vijayaraghaven, R.; Varadaraju, U. V.Material Chem. & Phys. 1998, 56, 63. https://doi.org/10.1016/S0254-0584(98)00140-0
  28. Demourgues, A.; Wattiaux, A.; Grenier, J. C.; Pouchard, M.; Soubeyroux, J. L.; Dance, J. M.; Hagenmueller, P. J. Solid State Chem. 1993, 105, 458. https://doi.org/10.1006/jssc.1993.1238
  29. Rial, C.; Moran, E.; Alario-Franco, M. A.; Amador, U.; Andersen,N. H. Physica C 1997, 278, 122. https://doi.org/10.1016/S0921-4534(97)00097-X
  30. Kamenev, K. V.; Lees, M. R.; Balakrishnan, G.; McK. Paul, D.;Marshall, W. G.; Tissen, V. G.; Nefedova, M. V. Phys. Rev. Lett.2000, 84, 2710. https://doi.org/10.1103/PhysRevLett.84.2710
  31. Moritomo, Y.; Hirota, K.; Nakao, H.; Kiyama, T.; Murakami, Y.;Okamoto, S.; Ishihara, S.; Maekawa, S.; Kubota, M.; Yoshizawa,H. Phys. Rev. B 2000, 62, 17. https://doi.org/10.1103/PhysRevB.62.17