DOI QR코드

DOI QR Code

Molecular Design of Novel Conjugated Polymers for Blue-Light-Emitting Devices

  • Hong, Sung Y. (Department of Chemistry, Institute of Natural Science,GKosin University)
  • 발행 : 2003.07.20

초록

A quantum-chemical study of conformations and electronic structures of polyheterocyclic derivatives with vinylenediheteroatom substituents at the 3- and 4-positions was performed to search for novel blue-lightemitting conjugated polymers. Conformational potential energy curves of the polymers were constructed as a function of the helical angle (a) through semiempirical Hartree-Fock band calculations at the Austin model 1 level. It is found that poly(3,4-vinylenedioxythiophene) possesses a quite flat curve in the range of α = 51.4°- 120°. Replacing S atoms for O atoms greatly increases repulsion between the neighboring units, and thereby the units become perpendicular to one another. Because of the hydrogen bonding between O and NH, poly(3,4- vinylenedioxypyrrole) is predicted to be anti-coplanar and poly(3,4-vinylenediaminofuran) to be nearly anticoplanar. According to the modified extended Huckel band calculations, the HOMO-LUMO gaps (HLGs) of the polymers, unless the polymer chains are twisted, are close to or slightly smaller than those of their respective mother polymers. Among the polymers, poly(3,4-vinylenedioxythiophene) is presumed to be the most probable candidate for a blue-light emitter because its HLG is within the range of the electronic requirement for blue-light emitters.

키워드

참고문헌

  1. Kraft, A.; Grimsdale,A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402. https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  2. Chen, F.; Mehta, P. G.; Takiff, L.; McCullough, R. D. J. Mater.Chem. 1996, 6, 1763. https://doi.org/10.1039/jm9960601763
  3. Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino,K. Jpn. J. Appl. Phys. 1991, 30, L1938. https://doi.org/10.1143/JJAP.30.L1938
  4. Braun, D.; Gustafsson, G.;McBranch, D.; Heeger, A. J. J. Appl. Phys. 1992, 72, 564. https://doi.org/10.1063/1.351834
  5. Greenham, N. C.; Brown, A. R.; Bradley, D. D. R.; Friend, R. H.Synth. Met. 1993, 57, 4134. https://doi.org/10.1016/0379-6779(93)90570-M
  6. Greenham, N. C.; Friend, R. H.; Bradley, D. D. R. Adv. Mater.1994, 6, 491. https://doi.org/10.1002/adma.19940060612
  7. Greenham, N. C.; Moratti, S. C.; Bradley, D. D. R.;Friend, R. H.; Holms, A. B. Nature 1993, 365, 628. https://doi.org/10.1038/365628a0
  8. Burroughes, J.H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.;Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539. https://doi.org/10.1038/347539a0
  9. Gurge, R. M.; Sarker, A.; Lahti, P. M.; Hu, B.; Karasz, F. E.Macromolecules 1996, 29, 4287. https://doi.org/10.1021/ma960104n
  10. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.;Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature1990, 347, 539. https://doi.org/10.1038/347539a0
  11. Andersson, M. R.; Yu, G.; Heeger, A. J. Synth. Met. 1997, 85,1275. https://doi.org/10.1016/S0379-6779(97)80238-X
  12. Berggren, M.; Gustafsson, G.; Inganas, O.; Andersson, M. R.;Wennerstrom, O.; Hjertberg, T. Adv. Mater. 1994, 6, 488. https://doi.org/10.1002/adma.19940060611
  13. Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.;Andersson, M. R.; Hjertberg, T.; Wennerstrom, O. Nature 1994,372, 444. https://doi.org/10.1038/372444a0
  14. Gill, R. E.; Malliaras, G. G.; Wildeman, J.; Hadziioannou, G. Adv.Mater. 1994, 6, 132. https://doi.org/10.1002/adma.19940060206
  15. Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Adv. Mater. 1992,4, 36. https://doi.org/10.1002/adma.19920040107
  16. Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Synth. Met.1992, 51, 383. https://doi.org/10.1016/0379-6779(92)90293-R
  17. Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Jpn. J. Appl. Phys.1991, 30, L1941. https://doi.org/10.1143/JJAP.30.L1941
  18. Yang, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 79, 934. https://doi.org/10.1063/1.360875
  19. Kim, D. Y.; Cho, H. N.; Kim, C. Y. Prog. Polym. Sci. 2000, 25, 1089. https://doi.org/10.1016/S0079-6700(00)00034-4
  20. Andersson, M. R.; Berggren, M.; Inganas, O.; Gustafsson, G.; Gustafsson-Carlberg, J. C.; Selse, D.; Hjertberg, T.; Wennerstrom, O. Macromolecules 1995, 28, 7525. https://doi.org/10.1021/ma00126a033
  21. Miyazaki, Y.; Yamamoto, T.Chem. Lett. 1994, 41.
  22. Milliaras, G. G.; Herrema, J. K.; Wildeman, J.; Wieringa, R. H.;Gill, R. E.; Lampoura, S. S.; Hadziioannou, G. Adv. Mater. 1993,5, 721. https://doi.org/10.1002/adma.19930051006
  23. Yang, Z.; Karasz, F. E.; Geise, H. J. Macromolecules 1993,26, 6570. https://doi.org/10.1021/ma00076a040
  24. Zyung, T.; Hwang, D.-H.; Kang, I.-N.; Shim, H.-K.;Hwang, W.-Y.; Kim, J.-J. Chem. Mater. 1995, 7, 1499. https://doi.org/10.1021/cm00056a015
  25. Ryu, M.-K.; Lee, J.-H.; Lee, S.-M.; Kim, H.-K.; Zyung, T. Polym. Mater.Sci. Eng. 1996, 75, 408.
  26. Kim, Y.; Kwon, S.; Yoo, D.; Rubner, M.F.; Wrighton, M. S. Chem. Mater. 1997, 9, 2699. https://doi.org/10.1021/cm970586x
  27. Gowri, R.;Mandal, D.; Shivkumar, B.; Ramakrishnan, S. Macromolecules1998, 31, 1819. https://doi.org/10.1021/ma971324j
  28. Musfeldt, J. L.; Reynolds, J. R.; Tanner, D. B.; Ruiz, J. P.; Wang,J.; Pomerzntz, M. J. Polym. Sci. Part B: Polym. Phys. 1994, 32,2395. https://doi.org/10.1002/polb.1994.090321410
  29. Kang, B. S.; Seo, M.-L.; Jun, Y. S.; Lee, C. K.; Shin, S. C.Chem. Commun. 1996, 1167.
  30. Kang, B. S.; Kim, D. H.; Lim, S.M.; Kim, J.; Seo, M.-L.; Bark, K.-M.; Shin, S. C. Macromolecules1997, 30, 7196. https://doi.org/10.1021/ma9709462
  31. Cho, H. N.; Kim, D. Y.; Kim, Y. C.; Lee, J. Y.; Kim, C. Y. Adv.Mater. 1997, 9, 326. https://doi.org/10.1002/adma.19970090408
  32. Pang, Y.; Li, J.; Hu, B.; Karasz, F. E.Macromolecules 1998, 31, 6730. https://doi.org/10.1021/ma9807926
  33. Hong, S. Y.; Kim, D. Y.; Kim, C. Y.; Hoffmann, R.Macromolecules 2001, 34, 6474. https://doi.org/10.1021/ma010254k
  34. Pyo, S. M.; Kim, S. L.; Shin, T. J.; Park, H. K.; Ree, M.; Park, K.H.; Kang, J. S. Macromolecules 1998, 31, 4777. https://doi.org/10.1021/ma971399n
  35. Springborg, M. Int. J. Quantum Chem. 2000, 77, 843. https://doi.org/10.1002/(SICI)1097-461X(2000)77:5<843::AID-QUA6>3.0.CO;2-6
  36. Salzner, U.; Lagowski, J. B.; Pickup, P. G.; Poirier, R. A. J.Comput. Chem. 1997, 18, 1943. https://doi.org/10.1002/(SICI)1096-987X(19971130)18:15<1943::AID-JCC9>3.0.CO;2-O
  37. Salzner, U.; Pickup, P. G.; Poirier, R. A.; Lagowski, J. B. J. Phys.Chem. A 1998, 102, 2572. https://doi.org/10.1021/jp971652l
  38. Vaschetto, M. E.; Retamal, B. A.; Monkman, A. P.; Springborg,M. J. Phys. Chem. A 1999, 103, 11096. https://doi.org/10.1021/jp992204b
  39. Lim, S. L.; Tan, K. L.;Kang, E. T.; Chin, W. S. J. Chem. Phys. 2000, 112, 10648. https://doi.org/10.1063/1.481698
  40. Palmer, I. J.; Ladik, J. J. Comput. Chem. 1994, 15, 814. https://doi.org/10.1002/jcc.540150803
  41. Champagne, B.; Mosley, D. H.; Fripiat, J. G.; Anre, J.-M. Phys. Rev. B 1996-II, 54, 2381. https://doi.org/10.1103/PhysRevB.54.2381
  42. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J.Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
  43. Stewart, J. J. P. QCPE Bull.1985, 5, 62.
  44. Cui, C. X.; Kertesz, M. J. Am. Chem. Soc. 1989, 111,4216. https://doi.org/10.1021/ja00194a010
  45. Fabian, W. M. F. J. Comput. Chem. 1988, 9, 369. https://doi.org/10.1002/jcc.540090412
  46. Hong, S. Y.; Marynick, D. S. J. Chem. Phys. 1992, 96, 5497. https://doi.org/10.1063/1.462705
  47. Hong, S. Y.; Song, J. M. J. Chem. Phys. 1997, 107, 10607. https://doi.org/10.1063/1.474175
  48. Hong, S. Y. Bull. Korean Chem. Soc. 1999, 20, 42.
  49. Yamagauchi, S.; Goto,T.; Tamao, K. Angew. Chem. Int. Ed. 2000, 39, 1695. https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1695::AID-ANIE1695>3.0.CO;2-O
  50. Hong, S. Y.;Kwon, S. J.; Kim, S. C. J. Chem. Phys. 1996, 104, 1140. https://doi.org/10.1063/1.470769
  51. Hong, S.Y.; Song, J. M. Synth. Met. 1997, 85, 1113. https://doi.org/10.1016/S0379-6779(97)80172-5
  52. Cui, C. X.; Kertesz, M. Phys. Rev. B 1989-I, 40, 9661. https://doi.org/10.1103/PhysRevB.40.9661
  53. Bruckner, S.; Porzio, W. Makromol. Chem. 1988, 189, 961. https://doi.org/10.1002/macp.1988.021890426
  54. van Bolhuis, F.; Wynberg, H.; Havinga, E. E.; Meijer, E. W.;Staring, E. G. J. Synth. Met. 1989, 30, 381. https://doi.org/10.1016/0379-6779(89)90661-9
  55. Horowitz, G.; Bachet,B.; Yassar, A.; Lang, P.; Demanze, F.; Fave, J. L.; Garnier, F.Chem. Mater. 1995, 7, 1337. https://doi.org/10.1021/cm00055a010
  56. Caple, G.; Wheeler, B. L.; Swift, R.; Porter, T. L.; Jeffers, S. J.Phys. Chem. 1990, 94, 5639. https://doi.org/10.1021/j100378a002
  57. Lacaze, E.; Uvdal, K.; Bodo, R.;Garbarz, J.; Salaneck, W. R.; Schott, M. J. Polym. Sci., Polym.Phys. Ed. 1993, 31, 111. https://doi.org/10.1002/polb.1993.090310115
  58. Mena-osteritz, E.; Meyer, A.; Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Meijer, E. W.; Bauerle, P.Angew. Chem. Int. Ed. 2000, 39, 2680.
  59. Scheraga, H. A. Chem. Rev. 1971, 71, 195. https://doi.org/10.1021/cr60270a003
  60. Richards, W. G. J. Theor. Biol. 1974, 43, 389. https://doi.org/10.1016/S0022-5193(74)80070-6
  61. Kaneto, K.; Yoshino, K.; Inuishi, Y. Solid State Commun. 1983,46, 389. https://doi.org/10.1016/0038-1098(83)90454-4
  62. Chung, T.-C.; Kasufman, J. H.; Heeger, A. J.; Wudl, F.Phys. Rev. B 1984, 30, 702. https://doi.org/10.1103/PhysRevB.30.702
  63. Bondi, A. J. Phys. Chem. 1964,68, 441. https://doi.org/10.1021/j100785a001
  64. Street, G. B.; Clarke, T. C.; Krounbi, M.; Kanazawa, K.; Lee, V.;Pfluger, P.; Scott, J. C.; Weiser, G. Mol. Cryst. Liq. Cryst. 1982,83, 253. https://doi.org/10.1080/00268948208072174
  65. Bredas, J. L.; Scott, J. C.; Yakushi, K.; Street, G. B. Phys.Rev. B 1984, 30, 1023. https://doi.org/10.1103/PhysRevB.30.1023
  66. Zotti, G.; Schiavon, G.; Comisso, N.; Berlin, A.; Pagani, G. Synth.Met. 1990, 36, 337. https://doi.org/10.1016/0379-6779(90)90258-M
  67. Nobeli, I.; Price, S. L.; Lommerse, J. P. M.; Taylor, R. J. Comput.Chem. 1997, 18, 2060. https://doi.org/10.1002/(SICI)1096-987X(199712)18:16<2060::AID-JCC10>3.0.CO;2-S

피인용 문헌

  1. 3,4-Vinylenedioxythiophene (VDOT): a new building block for thiophene-based π-conjugated systems vol.2006, pp.3, 2003, https://doi.org/10.1039/b513923f
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450