DOI QR코드

DOI QR Code

Ab Initio Molecular Dynamics with Born-Oppenheimer and Extended Lagrangian Methods Using Atom Centered Basis Functions

  • Schlegel, H. Bernhard (Department of Chemistry, Wayne State University)
  • Published : 2003.06.20

Abstract

In ab initio molecular dynamics, whenever information about the potential energy surface is needed for integrating the equations of motion, it is computed “on the fly” using electronic structure calculations. For Born-Oppenheimer methods, the electronic structure calculations are converged, whereas in the extended Lagrangian approach the electronic structure is propagated along with the nuclei. Some recent advances for both approaches are discussed.

Keywords

References

  1. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford University Press: Oxford, England, 1987.
  2. Haile, J. M. Molecular Dynamics Simulation: Elementary Methods;Wiley: New York, 1992.
  3. Thompson, D. L. Trajectory Simulations of Molecular Collisions:Classical treatment, in Encyclopedia of Computational Chemistry;Schleyer, P. v. R., Allinger, N. L., Kollman, P. A., Clark, T.,Schaefer III, H. F., Gasteiger, J., Schreiner, P. R., Eds.; Wiley:Chichester, 1998; Vol. 5, pp 3056-3073.
  4. Advances in Classical Trajectory Methods; Hase, W. L., Ed.; JAI Press: Greenwich, 1992.
  5. Bunker, D. L. Meth. Comput. Phys. 1971, 10, 287.
  6. Raff, L. M.; Thompson, D. L. The Classical Trajectory Approachto Reactive Scattering, in Theory of Chemical Reaction Dynamics;Baer, M., Ed.; CRC Press: Boca Raton, 1985.
  7. Rapaport, D. C. The Art of Molecular Dynamics Simulation;Cambridge University Press: Cambridge; New York, 1995.
  8. Frenkel, D.; Smit, B. Understanding Molecular Simulation: fromAlgorithms to Applications, 2nd ed.; Academic Press: San Diego,2002.
  9. McCammon, J. A.; Harvey, S. C. Dynamics of Proteins andNucleic Acids; Cambridge University Press: Cambridge Cambridgeshire,New York, 1987.
  10. Gunsteren, W. F. v.; Weiner, P. K.; Wilkinson, A. J.; AlliantComputer Systems Corporation. Computer Simulation of BiomolecularSystems: Theoretical and Experimental Applications;ESCOM: Leiden, 1989.
  11. Kollman, P. Chem. Rev. 1993, 93, 2395-2417. https://doi.org/10.1021/cr00023a004
  12. Beveridge, D. L.; Dicapua, F. M. Annual Review of Biophysicsand Biophysical Chemistry 1989, 18, 431-492. https://doi.org/10.1146/annurev.bb.18.060189.002243
  13. Beveridge, D. L. Molecular Dynamics: DNA, in Encyclopedia ofComputational Chemistry; Schleyer, P. v. R., Allinger, N. L.,Kollman, P. A., Clark, T., Schaefer III, H. F., Gasteiger, J.,Schreiner, P. R., Eds.; Wiley: Chichester, 1998; Vol. 3, pp 1620-1628.
  14. Auffinger, P.; Weshof, E. Molecular Dynamics: Simulation ofNucleic Acids, in Encyclopedia of Computational Chemistry;Schleyer, P. v. R., Allinger, N. L., Kollman, P. A., Clark, T.,Schaefer III, H. F., Gasteiger, J., Schreiner, P. R., Eds.; Wiley:Chichester, 1998; Vol. 3, pp 1628-1639.
  15. Berendsen, H. J. C.; Tieleman, D. P. Molecular Dynamics: Studiesof Lipid Bilayers, in Encyclopedia of Computational Chemistry;Schleyer, P. v. R., Allinger, N. L., Kollman, P. A., Clark, T.,Schaefer III, H. F., Gasteiger, J., Schreiner, P. R., Eds.; Wiley:Chichester, 1998; Vol. 3, pp 1639-1650.
  16. Pedersen, L.; Darden, T. Molecular Dynamics: Techniques andApplications to Proteins, in Encyclopedia of ComputationalChemistry; Schleyer, P. v. R., Allinger, N. L., Kollman, P. A.,Clark, T., Schaefer III, H. F., Gasteiger, J., Schreiner, P. R., Eds.;Wiley: Chichester, 1998; Vol. 3, pp 1650-1659.
  17. Schatz, G. C. Rev. Mod. Phys. 1989, 61, 669-688. https://doi.org/10.1103/RevModPhys.61.669
  18. Schatz, G. C. The Analytical Representation of Potential EnergySurfaces for Chemical Reactions, in Advances in MolecularElectronic Structure Theory; Dunning, T. H., Ed.; JAI Press:London, 1990.
  19. Bolton, K.; Hase, W. L.; Peslherbe, G. H. Direct Dynamics ofReactive Systems, in Modern Methods for MultidimensionalDynamics Computation in Chemistry; Thompson, D. L., Ed.;World Scientific: Singapore, 1998; pp 143-189.
  20. Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471-2474. https://doi.org/10.1103/PhysRevLett.55.2471
  21. Press, W. H. Numerical Recipes in FORTRAN: The Art ofScientific Computing, 2nd ed.; Cambridge University Press:Cambridge, England; New York, NY, 1992.
  22. Helgaker, T.; Uggerud, E.; Jensen, H. J. A. Chem. Phys. Lett.1990, 173, 145-150. https://doi.org/10.1016/0009-2614(90)80068-O
  23. Uggerud, E.; Helgaker, T. J. Am. Chem. Soc. 1992, 114, 4265-4268. https://doi.org/10.1021/ja00037a033
  24. Braten, S. M.; Helgaker, T.; Uggerud, E. Org. Mass Spectrom.1993, 28, 1262-1269. https://doi.org/10.1002/oms.1210281043
  25. Bueker, H. H.; Uggerud, E. J. Phys. Chem. 1995, 99, 5945-5949. https://doi.org/10.1021/j100016a032
  26. Bueker, H. H.; Helgaker, T.; Ruud, K.; Uggerud, E. J. Phys. Chem.1996, 100, 15388-15392. https://doi.org/10.1021/jp960943b
  27. Oiestad, A. M. L.; Uggerud, E. Int. J. Mass Spectrom. 1997, 167,117-126. https://doi.org/10.1016/S0168-1176(97)00037-2
  28. Oiestad, E. L.; Uggerud, E. Int. J. Mass Spectrom. 1997, 165, 39-47. https://doi.org/10.1016/S0168-1176(97)00153-5
  29. Ruud, K.; Helgaker, T.; Uggerud, E. Theochem-J. Mol. Struct.1997, 393, 59-71. https://doi.org/10.1016/S0166-1280(96)04852-X
  30. Uggerud, E. Mass Spectrom. Rev. 1999, 18, 285-308. https://doi.org/10.1002/(SICI)1098-2787(1999)18:5<285::AID-MAS1>3.0.CO;2-V
  31. Chen, W.; Hase, W. L.; Schlegel, H. B. Chem. Phys. Lett. 1994,228, 436-442. https://doi.org/10.1016/0009-2614(94)00939-2
  32. Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H. B.J. Chem. Phys. 1999, 111, 3800-3805. https://doi.org/10.1063/1.480037
  33. Bakken, V.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 1999,111, 8773-8777. https://doi.org/10.1063/1.480224
  34. Schlegel, H. B. Geometry Optimization, in Encyclopedia ofComputational Chemistry; Schleyer, P. v. R., Allinger, N. L.,Kollman, P. A., Clark, T., Schaefer III, H. F., Gasteiger, J.,Schreiner, P. R., Eds.; Wiley: Chichester, 1998; Vol. 2, pp 1136-1142.
  35. Schlegel, H. B. Geometry Optimization on Potential EnergySurfaces, in Modern Electronic Structure Theory; Yarkony, D. R.,Ed.; World Scientific Publishing: Singapore, 1995; pp 459-500.
  36. Bofill, J. M. J. Comput. Chem. 1994, 15, 1-11. https://doi.org/10.1002/jcc.540150102
  37. Vreven, T.; Bernardi, F.; Garavelli, M.; Olivucci, M.; Robb, M. A.;Schlegel, H. B. J. Am. Chem. Soc. 1997, 119, 12687-12688. https://doi.org/10.1021/ja9725763
  38. Bolton, K.; Hase, W. L.; Schlegel, H. B.; Song, K. Chem. Phys.Lett. 1998, 288, 621-627. https://doi.org/10.1016/S0009-2614(98)00274-7
  39. Bolton, K.; Schlegel, H. B.; Hase, W. L.; Song, K. Y. Phys. Chem.Chem. Phys. 1999, 1, 999-1011. https://doi.org/10.1039/a808650h
  40. Sanchez-Galvez, A.; Hunt, P.; Robb, M. A.; Olivucci, M.; Vreven,T.; Schlegel, H. B. J. Am. Chem. Soc. 2000, 122, 2911-2924. https://doi.org/10.1021/ja993985x
  41. Li, X. S.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 2000, 113,10062-10067. https://doi.org/10.1063/1.1323503
  42. Bakken, V.; Danovich, D.; Shaik, S.; Schlegel, H. B. J. Am. Chem.Soc. 2001, 123, 130-134. https://doi.org/10.1021/ja002799k
  43. Li, X. S.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 2001, 114,8897-8904. https://doi.org/10.1063/1.1369153
  44. Li, X. S.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 2001, 115,6907-6912. https://doi.org/10.1063/1.1404141
  45. Li, X. S.; Anand, S.; Millam, J. M.; Schlegel, H. B. Phys. Chem.Chem. Phys. 2002, 4, 2554-2559. https://doi.org/10.1039/b111390a
  46. Anand, S.; Schlegel, H. B. J. Phys. Chem. A 2002, 106, 11623-11629. https://doi.org/10.1021/jp021495c
  47. Collins, M. A. Theor. Chem. Acc. 2002, 108, 313-324. https://doi.org/10.1007/s00214-002-0383-5
  48. Ischtwan, J.; Collins, M. A. J. Chem. Phys. 1994, 100, 8080-8088. https://doi.org/10.1063/1.466801
  49. Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys.1995, 103, 9669-9675. https://doi.org/10.1063/1.469982
  50. Thompson, K. C.; Collins, M. A. J. Chem. Soc.-Faraday Trans.1997, 93, 871-878. https://doi.org/10.1039/a606038b
  51. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302-8316. https://doi.org/10.1063/1.476259
  52. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys.1998, 108, 564-578. https://doi.org/10.1063/1.475419
  53. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816-826. https://doi.org/10.1063/1.479368
  54. Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys.1995, 102, 5647-5657. https://doi.org/10.1063/1.469296
  55. Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1996, 104, 4600-4610. https://doi.org/10.1063/1.471207
  56. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1998, 109, 9728- 9736. https://doi.org/10.1063/1.477643
  57. Bettens, R. P. A.; Hansen, T. A.; Collins, M. A. J. Chem. Phys.1999, 111, 6322-6332. https://doi.org/10.1063/1.479937
  58. Collins, M. A.; Zhang, D. H. J. Chem. Phys. 1999, 111, 9924-9931. https://doi.org/10.1063/1.480344
  59. Fuller, R. O.; Bettens, R. P. A.; Collins, M. A. J. Chem. Phys.2001, 114, 10711-10716. https://doi.org/10.1063/1.1377602
  60. Song, K. Y.; Collins, M. A. Chem. Phys. Lett. 2001, 335, 481-488. https://doi.org/10.1016/S0009-2614(01)00020-3
  61. Remler, D. K.; Madden, P. A. Mol. Phys. 1990, 70, 921-966. https://doi.org/10.1080/00268979000101451
  62. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.;Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045-1097. https://doi.org/10.1103/RevModPhys.64.1045
  63. Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Theory andImplementation, in Modern Methods and Algorithms of QuantumChemistry; Grotendorst, J., Ed.; John von Neumann Institute forComputing: Julich, 2000; Vol. 1, pp 301-449.
  64. Tuckerman, M. E.; Parrinello, M. J. Chem. Phys. 1994, 101, 1302-1315. https://doi.org/10.1063/1.467823
  65. Tuckerman, M. E.; Parrinello, M. J. Chem. Phys. 1994, 101, 1316-1329. https://doi.org/10.1063/1.467824
  66. Rothlisberger, U. Computational Chemistry 2001, 6, 33-68.
  67. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab InitioMolecular Orbital Theory; Wiley: New York, 1986.
  68. Foresman, J. B.; Frisch, A. Exploring Chemistry with ElectronicStructure Methods, 2nd ed.; Gaussian Inc.: Pittsburgh, PA, 1996.
  69. Jensen, F. Introduction to Computational Chemistry; Wiley:Chichester, New York, 1999.
  70. Cramer, C. J. Essentials of Computational Chemistry: Theoriesand Models; J. Wiley: West Sussex, England, New York, 2002.
  71. Goedecker, S. Rev. Mod. Phys. 1999, 71, 1085-1123. https://doi.org/10.1103/RevModPhys.71.1085
  72. Scuseria, G. E. J. Phys. Chem. A 1999, 103, 4782-4790. https://doi.org/10.1021/jp990629s
  73. Li, X. P.; Nunes, W.; Vanderbilt, D. Phys. Rev. B 1993, 47, 10891-10894. https://doi.org/10.1103/PhysRevB.47.10891
  74. Schlegel, H. B.; Millam, J. M.; Iyengar, S. S.; Voth, G. A.;Daniels, A. D.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 2001, 114, 9758-9763. https://doi.org/10.1063/1.1372182
  75. Iyengar, S. S.; Schlegel, H. B.; Millam, J. M.; Voth, G. A.;Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 2001, 115, 10291-10302. https://doi.org/10.1063/1.1416876
  76. Schlegel, H. B.; Iyengar, S. S.; Li, X.; Millam, J. M.; Voth, G. A.;Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 2002, 117, 8694-8704. https://doi.org/10.1063/1.1514582
  77. Millam, J. M.; Scuseria, G. E. J. Chem. Phys. 1997, 106, 5569-5577. https://doi.org/10.1063/1.473579
  78. McWeeny, R. Rev. Mod. Phys. 1960, 32, 335-339.
  79. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J.Chem. Phys. 1982, 76, 637-649. https://doi.org/10.1063/1.442716
  80. Hartke, B.; Carter, E. A. J. Chem. Phys. 1992, 97, 6569-6578. https://doi.org/10.1063/1.463660
  81. Hartke, B.; Carter, E. A. Chem. Phys. Lett. 1992, 189, 358-362. https://doi.org/10.1016/0009-2614(92)85215-V
  82. Gibson, D. A.; Carter, E. A. J. Phys. Chem. 1993, 97, 13429-13434. https://doi.org/10.1021/j100153a002
  83. Gibson, D. A.; Ionova, I. V.; Carter, E. A. Chem. Phys. Lett. 1995,240, 261-267. https://doi.org/10.1016/0009-2614(95)00537-E
  84. Tangney, P.; Scandolo, S. J. Chem. Phys. 2002, 116, 14-24. https://doi.org/10.1063/1.1423331

Cited by

  1. Molecular Dynamics in Strong Laser Fields: A New Algorithm for ab Initio Classical Trajectories vol.9, pp.8, 2013, https://doi.org/10.1021/ct400388j
  2. Molecular dynamics out of equilibrium: mechanics and measurables vol.4, pp.6, 2014, https://doi.org/10.1002/wcms.1190
  3. Multiple-Time Step Ab Initio Molecular Dynamics Based on Two-Electron Integral Screening vol.11, pp.3, 2015, https://doi.org/10.1021/ct500904x
  4. Cl: Comparison Between Direct Dynamics Trajectory Simulations and Experiment vol.120, pp.11, 2016, https://doi.org/10.1021/acs.jpca.5b12664
  5. Superatom as an Excess Electron Acceptor To Construct Materials with Excellent Nonlinear Optical Properties vol.55, pp.9, 2016, https://doi.org/10.1021/acs.inorgchem.6b00224
  6. Quantum dynamical simulation of the scattering of Ar from a frozen LiF(100) surface based on a first principles interaction potential vol.143, pp.1, 2015, https://doi.org/10.1063/1.4923182
  7. 2 reaction: Reaction mechanisms at the atomic level from direct chemical dynamics simulations vol.148, pp.1, 2018, https://doi.org/10.1063/1.5000400
  8. Separation of anticancer medicines carmustine, lomustine, semustine and melphalan by PAMAM dendrimer: a theoretical study vol.15, pp.6, 2018, https://doi.org/10.1007/s13738-018-1320-4
  9. Mg spin affects adenosinetriphosphate activity vol.1, pp.1, 2008, https://doi.org/10.1186/1754-0429-1-18
  10. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  11. Static and dynamic reaction pathways involved in the reaction of O and CH3F vol.947, pp.1, 2003, https://doi.org/10.1016/j.theochem.2010.02.008
  12. Dynamic reaction pathways of anionic products on the exit-channel potential energy surface for the reaction of O with C2H4 vol.958, pp.1, 2003, https://doi.org/10.1016/j.theochem.2010.07.023
  13. Molecular automation: a new kind of simulation applied to ionic solutions vol.50, pp.1, 2003, https://doi.org/10.1080/00319104.2011.590988
  14. Fragment-Based Ab Initio Molecular Dynamics Simulation for Combustion vol.26, pp.11, 2003, https://doi.org/10.3390/molecules26113120
  15. Exploring the Franck-Condon region of a photoexcited charge transfer complex in solution to interpret femtosecond stimulated Raman spectroscopy: excited state electronic structure methods to unveil no vol.12, pp.23, 2003, https://doi.org/10.1039/d1sc01238j