References
- Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford University Press: Oxford, England, 1987.
- Haile, J. M. Molecular Dynamics Simulation: Elementary Methods;Wiley: New York, 1992.
- Thompson, D. L. Trajectory Simulations of Molecular Collisions:Classical treatment, in Encyclopedia of Computational Chemistry;Schleyer, P. v. R., Allinger, N. L., Kollman, P. A., Clark, T.,Schaefer III, H. F., Gasteiger, J., Schreiner, P. R., Eds.; Wiley:Chichester, 1998; Vol. 5, pp 3056-3073.
- Advances in Classical Trajectory Methods; Hase, W. L., Ed.; JAI Press: Greenwich, 1992.
- Bunker, D. L. Meth. Comput. Phys. 1971, 10, 287.
- Raff, L. M.; Thompson, D. L. The Classical Trajectory Approachto Reactive Scattering, in Theory of Chemical Reaction Dynamics;Baer, M., Ed.; CRC Press: Boca Raton, 1985.
- Rapaport, D. C. The Art of Molecular Dynamics Simulation;Cambridge University Press: Cambridge; New York, 1995.
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: fromAlgorithms to Applications, 2nd ed.; Academic Press: San Diego,2002.
- McCammon, J. A.; Harvey, S. C. Dynamics of Proteins andNucleic Acids; Cambridge University Press: Cambridge Cambridgeshire,New York, 1987.
- Gunsteren, W. F. v.; Weiner, P. K.; Wilkinson, A. J.; AlliantComputer Systems Corporation. Computer Simulation of BiomolecularSystems: Theoretical and Experimental Applications;ESCOM: Leiden, 1989.
- Kollman, P. Chem. Rev. 1993, 93, 2395-2417. https://doi.org/10.1021/cr00023a004
- Beveridge, D. L.; Dicapua, F. M. Annual Review of Biophysicsand Biophysical Chemistry 1989, 18, 431-492. https://doi.org/10.1146/annurev.bb.18.060189.002243
- Beveridge, D. L. Molecular Dynamics: DNA, in Encyclopedia ofComputational Chemistry; Schleyer, P. v. R., Allinger, N. L.,Kollman, P. A., Clark, T., Schaefer III, H. F., Gasteiger, J.,Schreiner, P. R., Eds.; Wiley: Chichester, 1998; Vol. 3, pp 1620-1628.
- Auffinger, P.; Weshof, E. Molecular Dynamics: Simulation ofNucleic Acids, in Encyclopedia of Computational Chemistry;Schleyer, P. v. R., Allinger, N. L., Kollman, P. A., Clark, T.,Schaefer III, H. F., Gasteiger, J., Schreiner, P. R., Eds.; Wiley:Chichester, 1998; Vol. 3, pp 1628-1639.
- Berendsen, H. J. C.; Tieleman, D. P. Molecular Dynamics: Studiesof Lipid Bilayers, in Encyclopedia of Computational Chemistry;Schleyer, P. v. R., Allinger, N. L., Kollman, P. A., Clark, T.,Schaefer III, H. F., Gasteiger, J., Schreiner, P. R., Eds.; Wiley:Chichester, 1998; Vol. 3, pp 1639-1650.
- Pedersen, L.; Darden, T. Molecular Dynamics: Techniques andApplications to Proteins, in Encyclopedia of ComputationalChemistry; Schleyer, P. v. R., Allinger, N. L., Kollman, P. A.,Clark, T., Schaefer III, H. F., Gasteiger, J., Schreiner, P. R., Eds.;Wiley: Chichester, 1998; Vol. 3, pp 1650-1659.
- Schatz, G. C. Rev. Mod. Phys. 1989, 61, 669-688. https://doi.org/10.1103/RevModPhys.61.669
- Schatz, G. C. The Analytical Representation of Potential EnergySurfaces for Chemical Reactions, in Advances in MolecularElectronic Structure Theory; Dunning, T. H., Ed.; JAI Press:London, 1990.
- Bolton, K.; Hase, W. L.; Peslherbe, G. H. Direct Dynamics ofReactive Systems, in Modern Methods for MultidimensionalDynamics Computation in Chemistry; Thompson, D. L., Ed.;World Scientific: Singapore, 1998; pp 143-189.
- Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471-2474. https://doi.org/10.1103/PhysRevLett.55.2471
- Press, W. H. Numerical Recipes in FORTRAN: The Art ofScientific Computing, 2nd ed.; Cambridge University Press:Cambridge, England; New York, NY, 1992.
- Helgaker, T.; Uggerud, E.; Jensen, H. J. A. Chem. Phys. Lett.1990, 173, 145-150. https://doi.org/10.1016/0009-2614(90)80068-O
- Uggerud, E.; Helgaker, T. J. Am. Chem. Soc. 1992, 114, 4265-4268. https://doi.org/10.1021/ja00037a033
- Braten, S. M.; Helgaker, T.; Uggerud, E. Org. Mass Spectrom.1993, 28, 1262-1269. https://doi.org/10.1002/oms.1210281043
- Bueker, H. H.; Uggerud, E. J. Phys. Chem. 1995, 99, 5945-5949. https://doi.org/10.1021/j100016a032
- Bueker, H. H.; Helgaker, T.; Ruud, K.; Uggerud, E. J. Phys. Chem.1996, 100, 15388-15392. https://doi.org/10.1021/jp960943b
- Oiestad, A. M. L.; Uggerud, E. Int. J. Mass Spectrom. 1997, 167,117-126. https://doi.org/10.1016/S0168-1176(97)00037-2
- Oiestad, E. L.; Uggerud, E. Int. J. Mass Spectrom. 1997, 165, 39-47. https://doi.org/10.1016/S0168-1176(97)00153-5
- Ruud, K.; Helgaker, T.; Uggerud, E. Theochem-J. Mol. Struct.1997, 393, 59-71. https://doi.org/10.1016/S0166-1280(96)04852-X
- Uggerud, E. Mass Spectrom. Rev. 1999, 18, 285-308. https://doi.org/10.1002/(SICI)1098-2787(1999)18:5<285::AID-MAS1>3.0.CO;2-V
- Chen, W.; Hase, W. L.; Schlegel, H. B. Chem. Phys. Lett. 1994,228, 436-442. https://doi.org/10.1016/0009-2614(94)00939-2
- Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, H. B.J. Chem. Phys. 1999, 111, 3800-3805. https://doi.org/10.1063/1.480037
- Bakken, V.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 1999,111, 8773-8777. https://doi.org/10.1063/1.480224
- Schlegel, H. B. Geometry Optimization, in Encyclopedia ofComputational Chemistry; Schleyer, P. v. R., Allinger, N. L.,Kollman, P. A., Clark, T., Schaefer III, H. F., Gasteiger, J.,Schreiner, P. R., Eds.; Wiley: Chichester, 1998; Vol. 2, pp 1136-1142.
- Schlegel, H. B. Geometry Optimization on Potential EnergySurfaces, in Modern Electronic Structure Theory; Yarkony, D. R.,Ed.; World Scientific Publishing: Singapore, 1995; pp 459-500.
- Bofill, J. M. J. Comput. Chem. 1994, 15, 1-11. https://doi.org/10.1002/jcc.540150102
- Vreven, T.; Bernardi, F.; Garavelli, M.; Olivucci, M.; Robb, M. A.;Schlegel, H. B. J. Am. Chem. Soc. 1997, 119, 12687-12688. https://doi.org/10.1021/ja9725763
- Bolton, K.; Hase, W. L.; Schlegel, H. B.; Song, K. Chem. Phys.Lett. 1998, 288, 621-627. https://doi.org/10.1016/S0009-2614(98)00274-7
- Bolton, K.; Schlegel, H. B.; Hase, W. L.; Song, K. Y. Phys. Chem.Chem. Phys. 1999, 1, 999-1011. https://doi.org/10.1039/a808650h
- Sanchez-Galvez, A.; Hunt, P.; Robb, M. A.; Olivucci, M.; Vreven,T.; Schlegel, H. B. J. Am. Chem. Soc. 2000, 122, 2911-2924. https://doi.org/10.1021/ja993985x
- Li, X. S.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 2000, 113,10062-10067. https://doi.org/10.1063/1.1323503
- Bakken, V.; Danovich, D.; Shaik, S.; Schlegel, H. B. J. Am. Chem.Soc. 2001, 123, 130-134. https://doi.org/10.1021/ja002799k
- Li, X. S.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 2001, 114,8897-8904. https://doi.org/10.1063/1.1369153
- Li, X. S.; Millam, J. M.; Schlegel, H. B. J. Chem. Phys. 2001, 115,6907-6912. https://doi.org/10.1063/1.1404141
- Li, X. S.; Anand, S.; Millam, J. M.; Schlegel, H. B. Phys. Chem.Chem. Phys. 2002, 4, 2554-2559. https://doi.org/10.1039/b111390a
- Anand, S.; Schlegel, H. B. J. Phys. Chem. A 2002, 106, 11623-11629. https://doi.org/10.1021/jp021495c
- Collins, M. A. Theor. Chem. Acc. 2002, 108, 313-324. https://doi.org/10.1007/s00214-002-0383-5
- Ischtwan, J.; Collins, M. A. J. Chem. Phys. 1994, 100, 8080-8088. https://doi.org/10.1063/1.466801
- Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys.1995, 103, 9669-9675. https://doi.org/10.1063/1.469982
- Thompson, K. C.; Collins, M. A. J. Chem. Soc.-Faraday Trans.1997, 93, 871-878. https://doi.org/10.1039/a606038b
- Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302-8316. https://doi.org/10.1063/1.476259
- Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys.1998, 108, 564-578. https://doi.org/10.1063/1.475419
- Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816-826. https://doi.org/10.1063/1.479368
- Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys.1995, 102, 5647-5657. https://doi.org/10.1063/1.469296
- Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1996, 104, 4600-4610. https://doi.org/10.1063/1.471207
- Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1998, 109, 9728- 9736. https://doi.org/10.1063/1.477643
- Bettens, R. P. A.; Hansen, T. A.; Collins, M. A. J. Chem. Phys.1999, 111, 6322-6332. https://doi.org/10.1063/1.479937
- Collins, M. A.; Zhang, D. H. J. Chem. Phys. 1999, 111, 9924-9931. https://doi.org/10.1063/1.480344
- Fuller, R. O.; Bettens, R. P. A.; Collins, M. A. J. Chem. Phys.2001, 114, 10711-10716. https://doi.org/10.1063/1.1377602
- Song, K. Y.; Collins, M. A. Chem. Phys. Lett. 2001, 335, 481-488. https://doi.org/10.1016/S0009-2614(01)00020-3
- Remler, D. K.; Madden, P. A. Mol. Phys. 1990, 70, 921-966. https://doi.org/10.1080/00268979000101451
- Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.;Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045-1097. https://doi.org/10.1103/RevModPhys.64.1045
- Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Theory andImplementation, in Modern Methods and Algorithms of QuantumChemistry; Grotendorst, J., Ed.; John von Neumann Institute forComputing: Julich, 2000; Vol. 1, pp 301-449.
- Tuckerman, M. E.; Parrinello, M. J. Chem. Phys. 1994, 101, 1302-1315. https://doi.org/10.1063/1.467823
- Tuckerman, M. E.; Parrinello, M. J. Chem. Phys. 1994, 101, 1316-1329. https://doi.org/10.1063/1.467824
- Rothlisberger, U. Computational Chemistry 2001, 6, 33-68.
- Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab InitioMolecular Orbital Theory; Wiley: New York, 1986.
- Foresman, J. B.; Frisch, A. Exploring Chemistry with ElectronicStructure Methods, 2nd ed.; Gaussian Inc.: Pittsburgh, PA, 1996.
- Jensen, F. Introduction to Computational Chemistry; Wiley:Chichester, New York, 1999.
- Cramer, C. J. Essentials of Computational Chemistry: Theoriesand Models; J. Wiley: West Sussex, England, New York, 2002.
- Goedecker, S. Rev. Mod. Phys. 1999, 71, 1085-1123. https://doi.org/10.1103/RevModPhys.71.1085
- Scuseria, G. E. J. Phys. Chem. A 1999, 103, 4782-4790. https://doi.org/10.1021/jp990629s
- Li, X. P.; Nunes, W.; Vanderbilt, D. Phys. Rev. B 1993, 47, 10891-10894. https://doi.org/10.1103/PhysRevB.47.10891
- Schlegel, H. B.; Millam, J. M.; Iyengar, S. S.; Voth, G. A.;Daniels, A. D.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 2001, 114, 9758-9763. https://doi.org/10.1063/1.1372182
- Iyengar, S. S.; Schlegel, H. B.; Millam, J. M.; Voth, G. A.;Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 2001, 115, 10291-10302. https://doi.org/10.1063/1.1416876
- Schlegel, H. B.; Iyengar, S. S.; Li, X.; Millam, J. M.; Voth, G. A.;Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 2002, 117, 8694-8704. https://doi.org/10.1063/1.1514582
- Millam, J. M.; Scuseria, G. E. J. Chem. Phys. 1997, 106, 5569-5577. https://doi.org/10.1063/1.473579
- McWeeny, R. Rev. Mod. Phys. 1960, 32, 335-339.
- Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J.Chem. Phys. 1982, 76, 637-649. https://doi.org/10.1063/1.442716
- Hartke, B.; Carter, E. A. J. Chem. Phys. 1992, 97, 6569-6578. https://doi.org/10.1063/1.463660
- Hartke, B.; Carter, E. A. Chem. Phys. Lett. 1992, 189, 358-362. https://doi.org/10.1016/0009-2614(92)85215-V
- Gibson, D. A.; Carter, E. A. J. Phys. Chem. 1993, 97, 13429-13434. https://doi.org/10.1021/j100153a002
- Gibson, D. A.; Ionova, I. V.; Carter, E. A. Chem. Phys. Lett. 1995,240, 261-267. https://doi.org/10.1016/0009-2614(95)00537-E
- Tangney, P.; Scandolo, S. J. Chem. Phys. 2002, 116, 14-24. https://doi.org/10.1063/1.1423331
Cited by
- Molecular Dynamics in Strong Laser Fields: A New Algorithm for ab Initio Classical Trajectories vol.9, pp.8, 2013, https://doi.org/10.1021/ct400388j
- Molecular dynamics out of equilibrium: mechanics and measurables vol.4, pp.6, 2014, https://doi.org/10.1002/wcms.1190
- Multiple-Time Step Ab Initio Molecular Dynamics Based on Two-Electron Integral Screening vol.11, pp.3, 2015, https://doi.org/10.1021/ct500904x
- Cl: Comparison Between Direct Dynamics Trajectory Simulations and Experiment vol.120, pp.11, 2016, https://doi.org/10.1021/acs.jpca.5b12664
- Superatom as an Excess Electron Acceptor To Construct Materials with Excellent Nonlinear Optical Properties vol.55, pp.9, 2016, https://doi.org/10.1021/acs.inorgchem.6b00224
- Quantum dynamical simulation of the scattering of Ar from a frozen LiF(100) surface based on a first principles interaction potential vol.143, pp.1, 2015, https://doi.org/10.1063/1.4923182
- 2 reaction: Reaction mechanisms at the atomic level from direct chemical dynamics simulations vol.148, pp.1, 2018, https://doi.org/10.1063/1.5000400
- Separation of anticancer medicines carmustine, lomustine, semustine and melphalan by PAMAM dendrimer: a theoretical study vol.15, pp.6, 2018, https://doi.org/10.1007/s13738-018-1320-4
- Mg spin affects adenosinetriphosphate activity vol.1, pp.1, 2008, https://doi.org/10.1186/1754-0429-1-18
- Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
- Static and dynamic reaction pathways involved in the reaction of O− and CH3F vol.947, pp.1, 2003, https://doi.org/10.1016/j.theochem.2010.02.008
- Dynamic reaction pathways of anionic products on the exit-channel potential energy surface for the reaction of O− with C2H4 vol.958, pp.1, 2003, https://doi.org/10.1016/j.theochem.2010.07.023
- Molecular automation: a new kind of simulation applied to ionic solutions vol.50, pp.1, 2003, https://doi.org/10.1080/00319104.2011.590988
- Fragment-Based Ab Initio Molecular Dynamics Simulation for Combustion vol.26, pp.11, 2003, https://doi.org/10.3390/molecules26113120
- Exploring the Franck-Condon region of a photoexcited charge transfer complex in solution to interpret femtosecond stimulated Raman spectroscopy: excited state electronic structure methods to unveil no vol.12, pp.23, 2003, https://doi.org/10.1039/d1sc01238j