DOI QR코드

DOI QR Code

An Active Site Arginine Residue in Tobacco Acetolactate Synthase

  • Kim, Sung-Ho (School of Life Sciences and Biotechnology Research Institute, Chungbuk National University) ;
  • Park, En-Joung (School of Life Sciences and Biotechnology Research Institute, Chungbuk National University) ;
  • Yoon, Sung-Sook (School of Life Sciences and Biotechnology Research Institute, Chungbuk National University) ;
  • Choi, Jung-Do (School of Life Sciences and Biotechnology Research Institute, Chungbuk National University)
  • Published : 2003.12.20

Abstract

Acetolatate synthase(ALS) catalyzes the first common step in the biosynthesis of valine, leucine, isoleucine in plants and microorganisms. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. To elucidate the roles of arginine residues in tobacco ALS, chemical modification and site-directed mutagenesis were performed. Recombinant tobacco ALS was expressed in E. coli and purified to homogeneity. The ALS was inactivated by arginine specific reagents, phenylglyoxal and 2,3-butanedione. The rate of inactivation was a function of the concentration of modifier. The inactivation by butanedione was enhanced by borate, and the inactivation was reversible on removal of excess butanedione and borate. The substrate pyruvate and competitive inhibitors fluoropyruvate and phenylpyruvate protected the enzyme against inactivation by both modifiers. The mutation of well-conserved Arg198 of the ALS by Gln abolished the enzymatic activity as well as the binding affinity for cofactor FAD. However, the mutation of R198K did not affect significantly the binding of FAD to the enzyme. Taken together, the results imply that Arg198 is essential for the catalytic activity of the ALS and involved in the binding of FAD, and that the positive charge of the Arg is crucial for the interaction with negatively charged FAD.

Keywords

References

  1. Duggleby, R. G.; Pang, S. S. J. Biochem. Mol. Biol. 2000, 33, 1.
  2. LaRossa, R. A.; Schloss, J. V. J. Biol. Chem. 1984, 259, 8753.
  3. Ray, T. B. Plant Physiol. 1984, 75, 827. https://doi.org/10.1104/pp.75.3.827
  4. Shaner, D. L.; Anderson, P. C.; Stidham, M. A. Plant Physiol. 1984, 76, 545. https://doi.org/10.1104/pp.76.2.545
  5. Gerwick, B. C.; Subramanian, M. V.; Loney-Gallant, V.; Chander, D. P. Pest. Sci. 1990, 29, 357. https://doi.org/10.1002/ps.2780290310
  6. Namgoong, S. K.; Lee, H. J.; Kim, Y. S.; Shin, J.-H.; Che, J.-K.; Jang, D. Y.; Kim, G. S.; Yoo, J. W.; Kang, M.-K.; Kil, M.-W.; Choi, J.-D.; Chang, S.-I. Biochem. Biophys. Res. Commun. 1999, 258, 797. https://doi.org/10.1006/bbrc.1999.0708
  7. Babczinski, P.; Zelinski, T. Pest. Sci. 1991, 31, 305. https://doi.org/10.1002/ps.2780310306
  8. Choi, J.-D.; Moon, H.; Chang, S.-I.; Chae, J.-K.; Shin, J.-H.; Korean Biochem. J. 1993, 26, 471.
  9. Schloss, J. V.; Dyk, K. E. V.; Vasta, J. F.; Kutny, B. M. Biochemistry 1985, 24, 4952. https://doi.org/10.1021/bi00339a034
  10. Eoyang, L.; Silverman, P. M. Method Enzymol. 1998, 166, 435.
  11. Barak, Z.; Chipman, D. M.; Gollop, N. J. Bacteriol. 1989, 169, 3750.
  12. Hill, C. M.; Duggleby, R. G. Biochem. J. 1998, 335, 653.
  13. Mazur, B. J.; Chui, C.-F.; Smith, J. K. Plant Physiol. 1987, 75, 1110.
  14. Hattori, J.; Rutledge, R. G.; Miki, B. L.; Baum, B. R. Can. J. Bot. 1992, 70, 1957. https://doi.org/10.1139/b92-244
  15. Grula, J. W.; Hudspeth, R. L.; Hobbs, S. L.; Anderson, D. M. Plant Mol. Biol. 1995, 28, 837. https://doi.org/10.1007/BF00042069
  16. Fang, G. Y.; Gross, P. R.; Chen, C.-H.; Lillis, M. Plant Mol. Biol. 1992, 12, 1185.
  17. Bernasconi, P.; Woodworth, A. R.; Rosen, B. A.; Subramanian, M. V.; Siehl, D. L. J. Biol. Chem. 1995, 270, 17381. https://doi.org/10.1074/jbc.270.29.17381
  18. Ott, K.-H.; Kwagh, J.-G.; Stockton, G. W.; Sidrov, V.; Kekefuva, G. J. Mol. Biol. 1996, 263, 359. https://doi.org/10.1006/jmbi.1996.0580
  19. Chang, S.-I.; Kang, M.-K.; Choi, J.-D.; Namgoong, S. K. Biochem. Biophys. Res. Commun. 1997, 234, 549. https://doi.org/10.1006/bbrc.1997.6678
  20. Chong, C.-K.; Shin, H.-J.; Chang, S.-I.; Choi, J.-D. Biochem. Biophys. Res. Commun. 1999, 259, 136. https://doi.org/10.1006/bbrc.1999.0740
  21. Shin, H.-J.; Chong, C.-K.; Chang, S.-I.; Choi, J.-D. Biochem. Biophys. Res. Commun. 2000, 271, 801. https://doi.org/10.1006/bbrc.2000.2706
  22. Oh, K.-J.; Park, E.-J.; Yoon, M.-Y.; Han, J.-R.; Choi, J.-D. Biochem. Biophys. Res. Commun. 2001, 282, 1237. https://doi.org/10.1006/bbrc.2001.4714
  23. Yoon, J.-Y.; Chung, S.-M.; Chang, S.-I.; Yoon, M.-Y.; Han, J.-R.; Choi, J.-D. Biochem. Biophys. Res. Commun. 2002, 293, 433. https://doi.org/10.1016/S0006-291X(02)00249-8
  24. Chong, C.-K.; Choi, J.-D. Biochem. Biophys. Res. Commun. 2000, 277, 462. https://doi.org/10.1006/bbrc.2000.3691
  25. Pang, S. S.; Guddat, L. W.; Duggleby, R. G. Acta Cryst. 2001, D57, 1321.
  26. Choi, J.-D.; Kim, B.-H.; Yoon, M.-Y. Bull. Korean Chem. Soc. 2003, 24, 627. https://doi.org/10.5012/bkcs.2003.24.5.627
  27. Lee, B.-W.; Choi, J.-D.; Yoon, M.-Y. Bull. Korean Chem. Soc. 2002, 23, 765. https://doi.org/10.5012/bkcs.2002.23.5.765
  28. Laemmli, U. K.; Nature 1970, 227, 680. https://doi.org/10.1038/227680a0
  29. Bradford, M. M. Anal. Biochem. 1976, 72, 248. https://doi.org/10.1016/0003-2697(76)90527-3
  30. Choi, J.-D.; McLormick, D. B. Biochemistry 1981, 20, 5722. https://doi.org/10.1021/bi00523a014
  31. Sarkar, G.; Sommer, S. S. Biotechnique. 1990, 8, 404.
  32. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Horbor Laboratory Press: Cold Spring Horbor, New York. 1989.
  33. Saiki, R. K.; Gelfand, D. H.; Stoffel, S.; Scharf, S. J.; Higuchi, R.; Horn, G. T.; Mullis, K. B.; Erlich, H. A. Science 1988, 239, 487. https://doi.org/10.1126/science.2448875
  34. Sanger, F.; Nicklen, S.; Coulson, A. R. Proc. Natl. Acad. Sci. USA 1977, 74, 5463. https://doi.org/10.1073/pnas.74.12.5463
  35. Westerfeld, W. W. J. Biol. Chem. 1945, 161, 495.
  36. Riordan, J. F. Biochemistry 1973, 12, 3915. https://doi.org/10.1021/bi00744a020
  37. Foster, M.; Harrison, J. H. Biochem. Biophys. Res. Commun. 1974, 58, 263. https://doi.org/10.1016/0006-291X(74)90921-8
  38. Rohrbach, H. D.; Bodley, J. W. Biochemistry 1977, 16, 1360. https://doi.org/10.1021/bi00626a019
  39. Takahashi, K. J. Biol. Chem. 1968, 243, 6171.
  40. Linders, M. D.; Morkunaite-Haimi, S.; Kinnunen, P. K. J.; Eriksson, O. J. Biol. Chem. 2002, 277, 937. https://doi.org/10.1074/jbc.M107610200
  41. Borders, C.; Riordan, J. F. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1975, 34, 647.
  42. Vensel, L. A.; Kantrowitz, E. R. J. Biol. Chem. 1980, 255, 7306.
  43. Chang, Y. Y.; Cronan, J. E. J. Bacteriol. 1988, 170, 3937.

Cited by

  1. Roles of Three Well-Conserved Arginine Residues in Mediating the Catalytic Activity of Tobacco Acetohydroxy Acid Synthase vol.138, pp.1, 2005, https://doi.org/10.1093/jb/mvi099
  2. Acetolactate synthase activity in Euphorbia heterophylla resistant to ALS- and protox- inhibiting herbicides vol.31, pp.4, 2013, https://doi.org/10.1590/S0100-83582013000400013
  3. A New Cyclophilin Inhibitor from Ganoderma lucidum: Purification and Characterization vol.25, pp.7, 2004, https://doi.org/10.5012/bkcs.2004.25.7.1055