DOI QR코드

DOI QR Code

Viscosity and Diffusion Constants Calculation of n-Alkanes by Molecular Dynamics Simulations

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University) ;
  • Chang, Tai-Hyun (Department of Chemistry and Center for Integrated Molecular System, Pohang University of Science and Technology)
  • Published : 2003.11.20

Abstract

In this paper we have presented the results for viscosity and self-diffusion constants of model systems for four liquid n-alkanes ($C_{12}, C_{20}, C_{32}, and C_{44}$) in a canonical ensemble at several temperatures using molecular dynamics (MD) simulations. The small chains of these n-alkanes are clearly $<{R_{ee}}^2>/6<{R_g}^2>>1$, which leads to the conclusion that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime. Calculated viscosity ${\eta}$ and self-diffusion constants D are comparable with experimental results and the temperature dependence of both ${\eta}$ and D is suitably described by the Arrhenius plot. The behavior of both activation energies, $E_{\eta}$ and $E_D$, with increasing chain length indicates that the activation energies approach asymptotic values as n increases to the higher value, which is experimentally observed. Two calculated monomeric friction constants ${\zeta}$ and ${\zeta}_D$ give a correct qualitative trend: decrease with increasing temperature and increase with increasing chain length n. Comparison of the time auto-correlation functions of the end-to-end vector calculated from the Rouse model for n-dodecane ($C_{12}$) at 273 K and for n-tetratetracontane ($C_{44}$) at 473 K with those extracted directly from our MD simulations confirms that the short chain n-alkanes considered in this study are far away from the Rouse regime.

Keywords

References

  1. Berry, G. C.; Fox, T. G. Adv. Polym. Sci. 1968, 5, 261. https://doi.org/10.1007/BFb0050985
  2. Tirrell, M. Rubber Chem. Technol. 1984, 57, 523. https://doi.org/10.5254/1.3536019
  3. Lodge, T. P.; Rotstein, N. A.; Prager, S. Adv. Chem. Phys. 1990, 9, 1.
  4. Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley:New York, 1980.
  5. Fleisher, G. Polym. Bull. (Berlin) 1983, 9, 152.
  6. Pearson, D. S.; Ver Strate, G.; von Meerwall, E.; Schilling, F. C.Macromolecules 1987, 20, 1133. https://doi.org/10.1021/ma00171a044
  7. Von Meerwall, E.; Beckman, S.; Jang, J.; Mattice, W. L. J. Chem.Phys. 1998, 108, 4299. https://doi.org/10.1063/1.475829
  8. De Gennes, P.-G. Scaling Concepts in Polymer Physics; CornellUniversity Press: Ithaca, New York, 1979.
  9. Harmandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N.Macromolecules 1998, 31, 7934. https://doi.org/10.1021/ma980698p
  10. Mondello, M.; Grest, G. S.; Webb, E. B.; Peczak, P. J. Chem.Phys. 1998, 109, 798. https://doi.org/10.1063/1.476619
  11. Park, H. S.; Chang, T.; Lee, S. H. J. Chem. Phys. 2000, 113, 5502. https://doi.org/10.1063/1.1289820
  12. Mundy, C. J.; Siepmann, J. I.; Klein, M. L. J. Chem. Phys. 1995,102, 3376. https://doi.org/10.1063/1.469211
  13. Cui, S. T.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 104, 255. https://doi.org/10.1063/1.470896
  14. Cui, S. T.; Gupta, S. A.; Cummings, P. T.; Cochran, H. D. J. Chem.Phys. 1996, 105, 1214. https://doi.org/10.1063/1.471971
  15. Evans, D. J. J. Chem. Phys. 1983, 78, 3297. https://doi.org/10.1063/1.445195
  16. Brown, D.; Clarke, J. H. R. Mol. Phys. 1984, 51, 1243. https://doi.org/10.1080/00268978400100801
  17. Andersen, H. J. Comput. Phys. 1984, 52, 24.
  18. Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J. Am. Chem. Soc.1984, 106, 6638. https://doi.org/10.1021/ja00334a030
  19. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford Univ. Press: Oxford, 1987; p 81.
  20. McQuarrie, D. A. Statistical Mechanics; Harper and Row: NewYork, 1976.
  21. Daivis, P. J.; Evans, D. J. J. Chem. Phys. 1994, 100, 541. https://doi.org/10.1063/1.466970
  22. Haile, J. M. Molecular Dynamics Simulation; Wiley: New York,1992.
  23. Boothroyd, A.; Rennie, A. R.; Boothroyd, C. B. Europhys. Lett.1991, 15, 715. https://doi.org/10.1209/0295-5075/15/7/004
  24. Goldstein, H. Classical Mechanics; Addison-Wesley: HarvardUniversity, 1974.
  25. Baschnagel, J.; Qin, K.; Paul, W.; Binder, K. Macromolecules1992, 25, 3117. https://doi.org/10.1021/ma00038a015
  26. Brown, D.; Clarke, J. H. R.; Okuda, M.; Yamazaki, T. J. Chem.Phys. 1994, 100, 1684 https://doi.org/10.1063/1.466596
  27. Brown, D.; Clarke, J. H. R.; Okuda, M.; Yamazaki, T. J. Chem.Phys. 1996, 104, 2078. https://doi.org/10.1063/1.470964
  28. Paul, W.; Smith, G. D.; Yoon, D. Y. Macromolecules 1997, 30,7772. https://doi.org/10.1021/ma971184d
  29. Paul, W.; Yoon, D. Y.; Smith, G. D. J. Chem. Phys. 1995, 103,1702. https://doi.org/10.1063/1.469740
  30. API 42, Properties of Hydrocarbons of High Molecular Weight;American Petroleum Institute: Research Project 42, Washington,D. C., 1966.
  31. Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7156. https://doi.org/10.1063/1.470344
  32. Padilla, P.; Toxvaerd, S. J. Chem. Phys. 1991, 94, 5650 https://doi.org/10.1063/1.460475
  33. Padilla, P.; Toxvaerd, S. J. Chem. Phys. 1991, 95, 509. https://doi.org/10.1063/1.461451
  34. Nederbragt, G. W.; Boelhouwer, J. W. M. Physica 1947, 13, 305. https://doi.org/10.1016/0031-8914(47)90002-5
  35. Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7161
  36. Ertl, H.; Dullien, F. A. L. AIChE J. 1973, 19, 1215. https://doi.org/10.1002/aic.690190619
  37. Cohen, M. H.; Tumbull, D. J. Chem. Phys. 1959, 31, 1164. https://doi.org/10.1063/1.1730566
  38. Mendelson, R. A.; Bowles, W. A.; Finer, F. L. J. Polym. Sci., PartA-2, 1970, 8, 105.
  39. Raju, V. R.; Smith, G. G.; Marin, G.; Knox, J. R.; Graessley, W.W. J. Polym. Sci., Polym. Phys. Ed. 1979, 17, 1183. https://doi.org/10.1002/pol.1979.180170704
  40. Carella, J. M.; Graessley, W. W.; Fetters, L. J. Macromolecules1984, 17, 2775. https://doi.org/10.1021/ma00142a059
  41. Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. J. Chem. Phys.1990, 93, 7137. https://doi.org/10.1063/1.459437
  42. Kubo, R. Rep. Prog. Phys. 1966, 29, 255. https://doi.org/10.1088/0034-4885/29/1/306
  43. Debye, P. Polar Molecules; Dover: New York, 1929.
  44. Berne, B.; Pecora, R. Dynamic Light Scattering; Wiley: NewYork, 1976.
  45. Doi, M.; Edwards, S. F. The theory of Polymer Dynamics;Clarendon: Oxford, 1986.

Cited by

  1. Experimental and Modeling Studies of Heat Transfer, Fluid Dynamics, and Autoxidation Chemistry in the Jet Fuel Thermal Oxidation Tester (JFTOT) vol.29, pp.11, 2015, https://doi.org/10.1021/acs.energyfuels.5b01679
  2. vol.36, pp.4, 2015, https://doi.org/10.1002/bkcs.10218
  3. Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method vol.61, pp.9, 2015, https://doi.org/10.1002/aic.14795
  4. A Simple Molecular Dynamics Lab To Calculate Viscosity as a Function of Temperature vol.93, pp.5, 2016, https://doi.org/10.1021/acs.jchemed.5b00587
  5. Determination of Carbon Chain Lengths of Fatty Acid Mixtures by Time Domain NMR pp.1613-7507, 2017, https://doi.org/10.1007/s00723-017-0953-2
  6. molecular dynamics vol.142, pp.15, 2015, https://doi.org/10.1063/1.4917040
  7. Linear viscoelasticity and thermorheological simplicity of n-hexadecane fluids under oscillatory shear via non-equilibrium molecular dynamics simulations vol.12, pp.16, 2010, https://doi.org/10.1039/b919672b
  8. Shear thinning and shear dilatancy of liquid n-hexadecane via equilibrium and nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects vol.129, pp.1, 2003, https://doi.org/10.1063/1.2943314
  9. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  10. Viscosity and Diffusion of Small Normal and Isomeric Alkanes: An Equilibrium Molecular Dynamics Simulation Study vol.29, pp.5, 2003, https://doi.org/10.5012/bkcs.2008.29.5.1059
  11. Diffusion of Probe Molecule in Small Liquid n-Alkanes: A Molecular Dynamics Simulation Study vol.29, pp.8, 2003, https://doi.org/10.5012/bkcs.2008.29.8.1554
  12. Evaluation and extrapolation of the solubility of H2 and CO in n-alkanes and n-alcohols using molecular simulation vol.384, pp.None, 2003, https://doi.org/10.1016/j.fluid.2014.10.022
  13. Molecular Hydrodynamics from Memory Kernels vol.116, pp.14, 2003, https://doi.org/10.1103/physrevlett.116.147804
  14. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field vol.95, pp.6, 2003, https://doi.org/10.1103/physrevb.95.064202
  15. Molecular Dynamic Modeling of Liquid Indium vol.95, pp.12, 2003, https://doi.org/10.1134/s0036024421110054