DOI QR코드

DOI QR Code

Applications of Third Order Models in Solvolytic Reaction of Aliphatic Substituted Acyl Derivatives in 2,2,2-Trifluoroethanol-Ethanol Systems

  • Published : 2003.09.20

Abstract

Rate constants at various temperatures and activation parameters are reported for solvolyses of acyl chlorides (RCOCl), with R = Me, Et, i-Pr, t-Bu, cyclopentylmethyl, benzyl, thiophenylmethyl, 2-phenylethyl, diphenylmethyl, and phenylthiomethyl in 100% ethanol, 100% 2,2,2-trifluoroethanol (TFE), 80% v/v ethanol/ water and 97% w/w TFE/water. Additional rate constants for solvolyses with R = Me, t-Bu, and $PhCH_2$ are reported for TFE/water and TFE/ethanol mixtures, and for solvolyses with R = t-Bu, and PhCH2 are reported for 1,1,1,3,3,3-hexafluoropropan-2-ol/water mixtures, as well as selected kinetic solvent isotope effects (MeOH/MeOD and TFE). Taft plots show that electron withdrawing groups (EWG) decrease reactivity significantly in TFE, but increase reactivity slightly in ethanol. Correlation of solvent effects using the extended Grunwald-Winstein (GW) equation shows an increasing sensitivity to solvent nucleophilicity for EWG. The effect of solvent stoichiometry in assumed third order reactions is evaluated for TFE/ethanol mixtures, which do not fit well in GW plots for R = Me, and t-Bu, and it is proposed that one molecule of TFE may have a specific role as electrophile; in contrast, reactions of substrates containing an EWG can be explained by third order reactions in which one molecule of solvent (ethanol or TFE) acts as a nucleophile, and a molecule of ethanol acts as a general base catalyst. Isokinetic relationships are also investigated.

Keywords

References

  1. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104,5741. https://doi.org/10.1021/ja00385a031
  2. Bentley, T. W.; Carter, G. E.; Roberts, K. J. Org. Chem.1984, 49, 5183. https://doi.org/10.1021/jo00200a034
  3. Liu, K.-T.; Sheu, H. I.; Chiu, P. F.; Hu, C. R. Tetrahedron Lett.1990, 31, 3611. https://doi.org/10.1016/S0040-4039(00)94457-5
  4. Kevill, D. N.; Ismail, H. J.; D'Souza, M. J. J.Org. Chem. 1994, 59, 6303. https://doi.org/10.1021/jo00100a036
  5. Fujio, M.; Saeki, Y.; Nakamoto,K.; Yatsugi, K.; Goto, M.; Kim, S. H.; Tsuji, Y.; Rappoport, Z.;Tsuno, Y. Bull. Chem. Soc. Jpn. 1995, 68, 2603. https://doi.org/10.1246/bcsj.68.2603
  6. Fujio, M.;Susuki, T.; Yatsugi, K.; Saeki, Y.; Goto, N.; Kim, S. H.;Tsuji, Y.;Rappoport, Z.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1995, 68, 2619. https://doi.org/10.1246/bcsj.68.2619
  7. Takeuchi, K.; Ohga, Y.; Ushino, T.; Takasuka, M. J. Org. Chem.1997, 62, 4904. https://doi.org/10.1021/jo970709x
  8. Takeuchi, K.; Okazaki, T.; Ushino, T.; Ueda, K.; Endo, T.;Notario, R. J. Org. Chem. 2001, 25, 2034.
  9. Kevill, D. N.; Abduljaber, M. A. J. Org. Chem. 2000, 65, 2548. https://doi.org/10.1021/jo991904+
  10. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. (S) 1993, 174.
  11. Bentley, T. W.; Llewellyn, G.; Ryu, Z. H. J. Org. Chem. 1998, 63,4654. https://doi.org/10.1021/jo980109d
  12. da Roza, D. A.; Andrews, L. J.; Keefer, R. M. J. Am. Chem. Soc.1973, 17, 7003.
  13. Lee, I.; Koo, I. S.; Sohn, S. C.; Lee, H. W. Bull. Korean Chem.Soc. 1982, 3, 92.
  14. Bentley, T. W.; Harris, H. C. J. Chem. Perkin Trans. 2 1986, 619.
  15. Patai, S. The Chemistry of Acyl Halides (especially Chapter 6); Interscience (John Wiley & Sons), Stonebridge Press: 1976.
  16. Kevill, D. N.; Daum, P. H.; Sapre, R. J. Chem. Soc. Perkin Trans. 21975, 963.
  17. Kevill, D. N.; Kim, C. B. J. Chem. Soc. Perkin. Trans. 2 1988,1353.
  18. Bentley, T. W.; Llewellyn, G.; McAlister, J. A. J. Org. Chem.1996, 61, 7927. https://doi.org/10.1021/jo9609844
  19. Bentley, T. W.; Shim, C. S. J. Chem. Soc. Perkin Trans. 2 1993,1659.
  20. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J.Chem. Soc. Perkin Trans. 2 2002, 1283.
  21. Kwon, D. S.; Park, H. S.; Um, I. H. Bull. Korean Chem. Soc.1991, 12, 93.
  22. Hogan, J. C.; Gandour, R. D. J. Org. Chem. 1991, 56, 2821. https://doi.org/10.1021/jo00008a044
  23. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. Bull. Korean Chem.Soc. 2002, 23, 715. https://doi.org/10.5012/bkcs.2002.23.5.715
  24. Koh, H. J.; Lee, I. J. Org. Chem. 1999, 64,4783. https://doi.org/10.1021/jo990115p
  25. Koh, H. J.; Shin, C. H.; Lee, H. W.; Lee, I. J. Chem. Soc.Perkin Trans. 2 1998, 1329.
  26. Lee, H. W.; Yun, Y. S.; Lee, B. S.; Koh, H. J.; Lee, I. J. Chem. Soc.Perkin Trans. 2 2000, 2302.
  27. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595. https://doi.org/10.1021/jo00219a029
  28. Castro, E. A.; Freudenberg, M. J. Org. Chem. 1980, 45, 906. https://doi.org/10.1021/jo01293a027
  29. Kaspi, J.; Rappoport, Z. Tetrahedron Lett. 1977, 2035.
  30. Raber, D. J.; Neal, W. C., Jr.; Dukes, M. D.; Harris, J. M.; Mount, D. L. J. Am. Chem. Soc. 1978, 100, 8187.
  31. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  32. Kevill, D. N. In Advances in Quantitative Structure PropertyRelationship, Charton, M., Ed.; JAI Press: Greenwich, CT, 1996;Vol. 1, p 181.
  33. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17,121. https://doi.org/10.1002/9780470171967.ch5
  34. Mukherjee, L. M.; Grunwald, E. J. Phys. Chem. Soc. 1951, 62,1311.
  35. Bentley, T. W.; Schadt, F. L.; Schleyer, P. v. R. J. Am. Chem. Soc.1972, 94, 992. https://doi.org/10.1021/ja00758a049
  36. Raber, D. J.; Dukes, M. D.; Gregory, J. Tetrahedron Lett. 1974, 8,667.
  37. Taft, T. W. In Steric Effects in Organic Chemistry (chapter 13);Newman, M. S., Ed.; Wiley: New York, 1956.
  38. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70,846. https://doi.org/10.1021/ja01182a117
  39. Kevill, D. N.; D'Souza, M. J. Phys. Org. Chem. 1992, 5,287. https://doi.org/10.1002/poc.610050602
  40. Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem.Soc. 1976, 98, 7667. https://doi.org/10.1021/ja00440a037
  41. Bentley, T. W.; Schleyer, P. v. R. Adv.Phys. Org. Chem. 1977, 14, 1. https://doi.org/10.1016/S0065-3160(08)60107-0
  42. Liu, K.-T. J. Chinese Chem.Soc. 1995, 42, 607.
  43. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. (S) 1996, 1649.
  44. Leffler, J. E.; Grunwald, E. Rates and Equilibria of OrganicReactions; Wiley: New York, 1963.
  45. Oh, O. H.; Jang, G. G.; Lim, G. T.; Ryu, Z. H. Bull. Korean Chem.Soc. 2002, 23, 1089. https://doi.org/10.5012/bkcs.2002.23.8.1089
  46. Shorter, J. Correlation Analysis of Organic Reactivity: WithParticular Reference to Multiple Regression (especially Chapter4); John Wiley & Sons Ltd., Research Studies Press: 1982.
  47. Kevill, D. N.; Oldfield, A. J.; D'Souza, M. J. J. Chem. Res. (S)1996, 122.
  48. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. PerkinTrans. 2 1997, 1721.
  49. Kyong, J. B.; Park, B.-C.; Kim, C.-B.;Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  50. Kevill, D. N.;D'Souza, M. J. J. Phys. Org. Chem. 2002, 15, 881. https://doi.org/10.1002/poc.569
  51. Liu, K.-T.; Chen, H.-I. J. Chem. Soc. Perkin Trans. 2 2000, 893.
  52. Ryu, Z. H.; Ju, C.-K.; Sung, D. D.; Sung, N. C.; Bentley, T. W.Bull. Korean Chem. Soc. 2002, 23, 123. https://doi.org/10.5012/bkcs.2002.23.1.123
  53. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res. (S) 1999,150.
  54. Bentley, T. W.; Jones, R. O. J. Chem. Perkin Trans. 2 1993,2351.
  55. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc.Perkin Trans. 2 1994, 753.
  56. Bentley, T. W.; Ebdon, D.;Llewellyn, G.; Abduljabor, M. H.; Miller, B.; Kevill, D. N. J.Chem. Soc. Dalton Trans. 1997, 3819.
  57. Bentley, T. W.; Ebdon,D. N. J. Phys. Org. Chem. 2001, 14, 759. https://doi.org/10.1002/poc.425
  58. Koo, I. S.; Yang, K.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem.Soc. Perkin Trans. 2 1998, 1179.
  59. Koo, I. S.; Lee, I.; Oh, J.; Yang, Y.; Bentley, T. W. J. Phys. Org.Chem. 1993, 6, 223. https://doi.org/10.1002/poc.610060405
  60. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56,1604. https://doi.org/10.1021/jo00004a048
  61. Laughton, P. M.; Robertson, R. E. Solute-Solvent Interaction;Coetzee, J. F.; Ritchie, C. D., Eds.; Marcel Dekker: New York,1969; p 319.
  62. Chang, S.; Koh, H. J.; Lee, B.; Lee, I. J. Org. Chem. 1995, 60,7760. https://doi.org/10.1021/jo00129a016
  63. Ingold, C. K. Quart. Rev. (London) 1957, 11, 1. https://doi.org/10.1039/qr9571100001
  64. Cason, J.; Kraus, K. W. J. Org. Chem. 1961, 26, 2624. https://doi.org/10.1021/jo01066a002
  65. Guggenheim, E. A. Phil. Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083

Cited by

  1. Correlation of the rates of solvolysis of acetyl chloride and α-substituted derivatives vol.86, pp.5, 2008, https://doi.org/10.1139/v08-028
  2. Extended Grunwald-Winstein Analysis - LFER Used to Gauge Solvent Effects in p-Nitrophenyl Chloroformate Solvolysis vol.9, pp.11, 2008, https://doi.org/10.3390/ijms9112231
  3. Stoichiometric Solvent Effect on SN1 Solvolytic Reactivity Accounting for Phenomenon of Maximum Rates in Methanol-Nitromethane Mixtures vol.25, pp.9, 2003, https://doi.org/10.5012/bkcs.2004.25.9.1346
  4. Stoichiometric Effects. Correlation of the Rates of Solvolysis of Isopropenyl Chloroformate vol.26, pp.11, 2005, https://doi.org/10.5012/bkcs.2005.26.11.1761
  5. Evaluation of Methylthio and Phenylthio Group Effects in the Solvolyses of 2-Chloro-2-(methylthio)acetone and 2-Chloro-2-(phenylthio)acetophenone Using Extended Grunwald-Winstein Equations vol.29, pp.11, 2003, https://doi.org/10.5012/bkcs.2008.29.11.2145
  6. Sixty Years of the Grunwald-Winstein Equation: Development and Recent Applications vol.2008, pp.2, 2008, https://doi.org/10.3184/030823408x293189
  7. Influence of the ortho effect in the solvolyses of dichlorobenzoyl chlorides vol.25, pp.1, 2003, https://doi.org/10.1002/poc.1851
  8. Further Kinetic Studies of Solvolytic Reactions of Isobutyl Chloroformate in Solvents of High Ionizing Power Under Conductometric Conditions vol.34, pp.2, 2003, https://doi.org/10.5012/bkcs.2013.34.2.615
  9. Correlation of the rates of solvolysis of acetic p‐toluenesulfonic anhydride (acetyl p‐toluenesulfonate) and a comparison with acetyl halides vol.26, pp.12, 2013, https://doi.org/10.1002/poc.3146
  10. Reaction Mechanism Studies Involving the Correlation of the Rates of Solvolysis of Benzoyl and P-Nitrobenzoyl P-Toluenesulfonates vol.38, pp.7, 2003, https://doi.org/10.3184/174751914x14018022669011