DOI QR코드

DOI QR Code

Accumulation of the Carbonaceous Species on the Ni/Al2O3 Catalyst during CO2 Reforming of Methane

  • Lee, Jae-Hee (Nano-Eco Research Center, Korea Institute of Science and Technology) ;
  • Joo, Oh-Shim (Nano-Eco Research Center, Korea Institute of Science and Technology) ;
  • Baek, Young-Soon (LNG Technology Research Center, Korea Gas Corporation) ;
  • Yu, Yong-Ho (Samsung Engineering Co., R&D Center) ;
  • Jung, Kwang-Deog (Nano-Eco Research Center, Korea Institute of Science and Technology)
  • Published : 2003.11.20

Abstract

The dependency of the rate of $CO_2$ reforming of methane on the catalyst loading and the reactor size was examined at a fixed temperature of $750\;^{\circ}C$ and a fixed GHSV of 18000 mL(STP)/$g_{cat}.h$. The conversion of methane in $CO_2$reforming decreased with increase in the reactor size. The catalyst was severely deactivated with increase in the catalyst amount. The amount of carbonaceous species combustible below $550\;^{\circ}C$, determined by TPO experiments with the used catalyst samples increased with increase in the catalyst amount, which was again confirmed by XRD and TEM experiments. The increase of the carbonaceous species combustible below $550\;^{\circ}C$ may be due to the suppression of the reverse Boudouard reaction, since the $CO_2$ reforming of methane, a highly endothermic reaction, resulted in lowering the reaction temperature.

Keywords

References

  1. Vannice, M. A. Catal. Rev. 1976, 14, 153. https://doi.org/10.1080/03602457608073410
  2. Ross, J. R. H.; van Keulen A. N. J.; Hegarty, M. E. S.; Seshan, K.Catal. Today 1996, 30, 193. https://doi.org/10.1016/0920-5861(96)00035-1
  3. Gadalla, A. M.; Bower, B. Chem. Eng. Sci. 1988, 43, 3049. https://doi.org/10.1016/0009-2509(88)80058-7
  4. Hansen, J. B.; Voss, B.; Joensen, F.; Sigurdardottir, I. D. SAEPaper 950063, 1995.
  5. Jung, K. D.; Joo, O. S. NICE 2002, 1.
  6. Kong, S. J.; Chung, T. S.; Lee, S. J.; Yoon, K. J. HWAHAKKONGHAK 2002, 40(1), 16.
  7. Moon, K. I.; Kim, C. H.; Choi, J. S.; Lee, S. H.; Kim, Y. G.; Lee,J. S. HWAHAK KONGHAK 1997, 35(6), 883.
  8. Inui, T.; Ichino, K.; Matsuoka, I.; Takeguchi, T.; Iwamoto, S.; Pu,S. B.; Nishimoto, S. Korean J. Chem. Eng. 1997, 14(6), 441. https://doi.org/10.1007/BF02706589
  9. Vernon, P. D. F.; Green, M. L. H.; Cheetham, A. K.; Ashcroft, A.T. Catal. Today 1992, 13, 47.
  10. Edwards, J. H.; Do, K. T.; Maitra, A. H.; Schuck, S.; Stein, W. Sol.Eng. 1995, 1, 389.
  11. Ashcroft, T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F.Nature 1991, 352, 225. https://doi.org/10.1038/352225a0
  12. Bitter, J. H.; Hally, W.; Seshan, K.; van Ommen, J. G.; Lercher, J.A. Catal. Today 1996, 29, 349. https://doi.org/10.1016/0920-5861(95)00303-7
  13. Choudhary, V. R.; Uphade, B. S.; Mamman, A. S. Catal. Lett.1995, 32, 387. https://doi.org/10.1007/BF00813233
  14. Bradford, M. C. J.; Vannice, M. A. Appl. Catal. A 1996, 142,97. https://doi.org/10.1016/0926-860X(96)00066-X
  15. Wei, J.; Xu, B.; Li, J.; Cheng, Z.; Zhu, Q. Appl. Catal. A 2000,196, 16.
  16. Zhang, Z.; Verykios, E. Appl. Catal. A 1996, 138, 109. https://doi.org/10.1016/0926-860X(95)00238-3
  17. Hu, Y. H.; Ruckenstein, E. Catal. Rev. 2002, 44(3), 423. https://doi.org/10.1081/CR-120005742
  18. Ruckenstein, E.; Hu, Y. H. Appl. Catal. 1997, 43, 71. https://doi.org/10.1016/S0926-3373(02)00279-5
  19. Rostrup-Nielsen, J. R. J. Catal. 1984, 85, 31. https://doi.org/10.1016/0021-9517(84)90107-6
  20. Wang, S.; Lu, G. Q. Applied Catalysis B 1998, 19, 267. https://doi.org/10.1016/S0926-3373(98)00081-2
  21. Montoya, J. A.; Romero-Pascual, E.; Gimon, C.; Angel, P. D.;Monzon, A. Catalysis Today 2002, 63, 71. https://doi.org/10.1016/S0920-5861(00)00447-8
  22. Roh, H. S.; Jun, K. W.; Paek, S. C.; Park, S. E. Catal. Lett. 2002,81, 147. https://doi.org/10.1023/A:1016531018819
  23. Seok, S. H.; Choi, S. H.; Park, E. D.; Han, S. H.; Lee, J. S. J.Catal. 2002, 209, 6. https://doi.org/10.1006/jcat.2002.3627
  24. Swaan, H. M.; Kroll, V. C. H.; Martin, G. A.; Mirodatos, C. Catal.Today 1994, 21, 571. https://doi.org/10.1016/0920-5861(94)80181-9
  25. Joo, O. S.; Jung, K. D. Bull. Korean Chem. Soc. 2002, 23(8),1149. https://doi.org/10.5012/bkcs.2002.23.8.1149
  26. Olsbye, U.; Moen, O.; Slagtern, A.; Dahl, I. M. Appl. Catal. 2002,228, 289. https://doi.org/10.1016/S0926-860X(01)00990-5
  27. Wurzel, T.; Malcus, S.; Mleczko, L. Chem. Eng. Sci. 2000, 55(18),3955. https://doi.org/10.1016/S0009-2509(99)00444-3
  28. Wang, S.; Lu, G. Q. Ind. Eng. Chem. Res. 1999, 38, 2615. https://doi.org/10.1021/ie980489t
  29. Zhang, Z. L.; Verykios, X. E. Catal. Today 1994, 21, 589. https://doi.org/10.1016/0920-5861(94)80183-5

Cited by

  1. Partial Oxidation of Methane over M-Sb-Te-O (M = Transition Metal) Catalysts vol.25, pp.4, 2004, https://doi.org/10.5012/bkcs.2004.25.4.573