DOI QR코드

DOI QR Code

Photocurrent Improvement by Incorporation of Single-Wall Carbon Nanotubes in TiO2 Film of Dye-Sensitized Solar Cells

  • Jung, Kyoung-Hwa (Division of Chemistry and Molecular Engineering, and CRM-COSEF, Korea University) ;
  • Jang, Song-Rim (Division of Chemistry and Molecular Engineering, and CRM-COSEF, Korea University) ;
  • Vittal, R. (Central Electrochemical Research Institute) ;
  • Kim, Dong-Hwan (Division of Materials Sciences, College of Engineering, Korea University) ;
  • Kim, Kang-Jin (Division of Chemistry and Molecular Engineering, and CRM-COSEF, Korea University)
  • Published : 2003.10.20

Abstract

Single-wall carbon nanotubes (SWCN) were integrated in $TiO_2$ film and the beneficial influence on the dyesensitized solar cells in terms of improved photocurrent was studied in the light of static J-V characteristics obtained both under illumination and in the dark, photocurrent transients, IPCE spectra and impedance spectra. Compared with a solar cell without SWCN, it is established that the photocurrent density of the modified cell increases at all applied potentials. The enhanced photocurrent density is correlated with the augmented concentration of electrons in the conduction band of $TiO_2$ and with increased electrical conductivity. Explanations are additionally corroborated with the help of SEM, Raman spectra and dye-desorption measurements.

Keywords

References

  1. Kymakis, E.; Alexandou, I.; Amaratunga, G. A. J. Synth. Met.2002, 127, 59. https://doi.org/10.1016/S0379-6779(01)00592-6
  2. Musa, I.; Baxendale, M.; Amaratunga, G. A. J.; Eccleston, W.Synth. Met. 1999, 102, 1250. https://doi.org/10.1016/S0379-6779(98)01452-0
  3. Haggenmueller, R.; Gommans, H. H.; Rinzler, A. G.; Fischer, J.E.; Winey, K. I. Chem. Phys. Lett. 2000, 330, 219. https://doi.org/10.1016/S0009-2614(00)01013-7
  4. Flahaut, E.; Peigney, A.; Laurent, Ch.; Marliere, Ch.; Chastel, F.;Rousset, A. Acta Mater. 2000, 48, 3803. https://doi.org/10.1016/S1359-6454(00)00147-6
  5. Ago, H.; Petrisch, K.; Shaffer, M. S. P.; Windle, A. H.; Friend, R. H. Adv. Mater. 1999, 11, 1281. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6
  6. Jung, K.-H.; Hong, J. S.; Vittal, R.; Kim, K.-J. Chem. Lett. 2002,31, 864.
  7. Huang, S. Y.; Schlichthörl, G.; Nozik, A. J.; Grätzel, M.; Frank, A.J. J. Phys. Chem. B 1997, 101, 2576. https://doi.org/10.1021/jp962377q
  8. Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys.Chem. B 1997, 101, 8141. https://doi.org/10.1021/jp9714126
  9. Moser, J.; Punchihewa, S.; Infelta, P. P.; Gratzel, M. Langmuir1991, 7, 3012. https://doi.org/10.1021/la00060a018
  10. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.;Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem.Soc. 1993, 115, 6382. https://doi.org/10.1021/ja00067a063
  11. Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.;Shklover, V.; Gratzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.
  12. Ferber, J.; Luther, J. Sol. Energy Mater. Sol. Cells 1998, 54,265. https://doi.org/10.1016/S0927-0248(98)00078-6
  13. Rothenberger, G.; Comte, P.; Grätzel, M. Sol. Energy Mater. Sol.Cells 1999, 58, 321. https://doi.org/10.1016/S0927-0248(99)00015-X
  14. Usami, A. Sol. Energy Mater. Sol. Cells 1999, 59, 163. https://doi.org/10.1016/S0927-0248(99)00068-9
  15. Kang, M. G.; Park, N.-G.; Chang, S. H.; Choi, S. H.; Kim, K.-J.Bull. Korean Chem. Soc. 2002, 23, 140. https://doi.org/10.5012/bkcs.2002.23.1.140
  16. Kang, T.-S.; Moon, S.-H.; Kim, K.-J. J. Electrochem. Soc. 2002,149, E155. https://doi.org/10.1149/1.1467367
  17. Hong, J. S.; Joo, M.; Vittal, R.; Kim, K.-J. J. Electrochem. Soc.2002, 149, E493. https://doi.org/10.1149/1.1518486
  18. Park, N.-G.; Chang, S. H.; van de Lagemaat, J.; Kim, K.-J.; Frank,A. J. Bull. Korean Chem. Soc. 2000, 21, 985.
  19. Holden, J. M.; Zhou, P.; Bi, X.X.; Eklund, P. C.; Bandow, S.; Jishi,R. A.; Chowdhury, K. D.; Dresselhaus, G.; Dresselhaus, M. S.Chem. Phys. Lett. 1994, 220, 186. https://doi.org/10.1016/0009-2614(94)00154-5
  20. Vincent, P.; Brioude, A.; Journet, C.; Rabaste, S.; Purcell, S. T.; LeBrusq, J.; Plenet, J. C. J. Non-Cryst. Solids 2002, 311, 130. https://doi.org/10.1016/S0022-3093(02)01371-6
  21. Park, N.-G.; Schlichthorl, G.; van de Lagemaat, J.; Cheong, H.M.; Mascarenhas, A.; Frank, A. J. J. Phys. Chem. B 1999, 103,3308. https://doi.org/10.1021/jp984529i
  22. Hauch, A.; Kern, R.; Feeber, J.; George, A.; Luther, J. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion; Vienna, 1998; p 260.
  23. Kang, T. S.; Chun, K. H.; Hong, J. S.; Moon, S. H.; Kim, K. J. J.Electrochem. Soc. 2000, 147, 3049. https://doi.org/10.1149/1.1393646
  24. Schwartsburg, K.; Willig, F. Appl. Phys. Lett. 1991, 58, 2520. https://doi.org/10.1063/1.104839
  25. Qian, X.; Qin, D.; Song, Q.; Bai, Y.; Li, T.; Tang, X.; Wang, E.;Dong, S. Thin Solid Films 2001, 385, 152. https://doi.org/10.1016/S0040-6090(01)00771-4
  26. Diamant, Y.; Chen, S. G.; Melamed, O.; Zaban, A. J. Phys. Chem.B 2003, 107, 1977. https://doi.org/10.1021/jp027827v

Cited by

  1. Electrochemistry and Photocurrent Response from Vertically-Aligned Chemically-Functionalized Single-Walled Carbon Nanotube Arrays vol.158, pp.3, 2011, https://doi.org/10.1149/1.3527057
  2. TiO2 Composing with Pristine, Metallic or Semiconducting Single-Walled Carbon Nanotubes: Which Gives the Best Performance for a Dye-Sensitized Solar Cell vol.13, pp.10, 2012, https://doi.org/10.1002/cphc.201200156
  3. Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells vol.14, pp.13, 2012, https://doi.org/10.1039/c2cp00035k
  4. Effect of single-wall carbon nanotubes on the properties of polymeric gel electrolyte dye-sensitized solar cells vol.18, pp.3, 2014, https://doi.org/10.1007/s10008-013-2302-1
  5. An in-depth review on the role of carbon nanostructures in dye-sensitized solar cells vol.3, pp.35, 2015, https://doi.org/10.1039/C5TA03644E
  6. Photoelectrochemical Cells vol.37, pp.8, 2016, https://doi.org/10.1002/bkcs.10837
  7. Rutile TiO2-modified multi-wall carbon nanotubes in TiO2 film electrodes for dye-sensitized solar cells vol.36, pp.12, 2006, https://doi.org/10.1007/s10800-006-9238-4
  8. Nanowire/Nanoparticle Composite Electrodes for Dye-Sensitized Solar Cells vol.54, pp.3, 2007, https://doi.org/10.2497/jjspm.54.202
  9. Carbon nanotube-modified electrodes for solar energy conversion vol.1, pp.1, 2008, https://doi.org/10.1039/b805419n
  10. Nanostructured dye solar cells on flexible substrates-Review vol.33, pp.13, 2009, https://doi.org/10.1002/er.1605
  11. nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells vol.20, pp.33, 2009, https://doi.org/10.1088/0957-4484/20/33/335706
  12. Electric-Field Enhancement of Photovoltaic Devices: A Third Reason for the Increase in the Efficiency of Photovoltaic Devices by Carbon Nanotubes vol.22, pp.20, 2010, https://doi.org/10.1002/adma.200903841
  13. Uniform Field Emission from Carbon Nanotubes Fabricated by CO Disproportionation vol.24, pp.12, 2003, https://doi.org/10.5012/bkcs.2003.24.12.1827
  14. Dependence of TiO2 Film Thickness on Photocurrent-Voltage Characteristics of Dye-Sensitized Solar Cells vol.25, pp.5, 2003, https://doi.org/10.5012/bkcs.2004.25.5.742
  15. Enhancement in Performance of Dye-Sensitized Solar Cells Modified with In Situ Photopolymerized PDEA in TiO[sub 2] Films vol.152, pp.7, 2005, https://doi.org/10.1149/1.1931429
  16. Photoinduced Superhydrophilicity in TiO2 Thin Films Modified with WO3 vol.26, pp.10, 2003, https://doi.org/10.5012/bkcs.2005.26.10.1515
  17. Photocurrent Response from Vertically Aligned Single-Walled Carbon Nanotube Arrays vol.114, pp.14, 2003, https://doi.org/10.1021/jp1003193
  18. Two-Photon Chemistry in Ruthenium 2,2′-Bipyridyl-Functionalized Single-Wall Carbon Nanotubes vol.16, pp.24, 2003, https://doi.org/10.1002/chem.200903506
  19. Two-Photon Chemistry in Ruthenium 2,2′-Bipyridyl-Functionalized Single-Wall Carbon Nanotubes vol.16, pp.24, 2003, https://doi.org/10.1002/chem.200903506