References
- Kymakis, E.; Alexandou, I.; Amaratunga, G. A. J. Synth. Met.2002, 127, 59. https://doi.org/10.1016/S0379-6779(01)00592-6
- Musa, I.; Baxendale, M.; Amaratunga, G. A. J.; Eccleston, W.Synth. Met. 1999, 102, 1250. https://doi.org/10.1016/S0379-6779(98)01452-0
- Haggenmueller, R.; Gommans, H. H.; Rinzler, A. G.; Fischer, J.E.; Winey, K. I. Chem. Phys. Lett. 2000, 330, 219. https://doi.org/10.1016/S0009-2614(00)01013-7
- Flahaut, E.; Peigney, A.; Laurent, Ch.; Marliere, Ch.; Chastel, F.;Rousset, A. Acta Mater. 2000, 48, 3803. https://doi.org/10.1016/S1359-6454(00)00147-6
- Ago, H.; Petrisch, K.; Shaffer, M. S. P.; Windle, A. H.; Friend, R. H. Adv. Mater. 1999, 11, 1281. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6
- Jung, K.-H.; Hong, J. S.; Vittal, R.; Kim, K.-J. Chem. Lett. 2002,31, 864.
- Huang, S. Y.; Schlichthörl, G.; Nozik, A. J.; Grätzel, M.; Frank, A.J. J. Phys. Chem. B 1997, 101, 2576. https://doi.org/10.1021/jp962377q
- Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys.Chem. B 1997, 101, 8141. https://doi.org/10.1021/jp9714126
- Moser, J.; Punchihewa, S.; Infelta, P. P.; Gratzel, M. Langmuir1991, 7, 3012. https://doi.org/10.1021/la00060a018
- Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.;Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem.Soc. 1993, 115, 6382. https://doi.org/10.1021/ja00067a063
- Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.;Shklover, V.; Gratzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.
- Ferber, J.; Luther, J. Sol. Energy Mater. Sol. Cells 1998, 54,265. https://doi.org/10.1016/S0927-0248(98)00078-6
- Rothenberger, G.; Comte, P.; Grätzel, M. Sol. Energy Mater. Sol.Cells 1999, 58, 321. https://doi.org/10.1016/S0927-0248(99)00015-X
- Usami, A. Sol. Energy Mater. Sol. Cells 1999, 59, 163. https://doi.org/10.1016/S0927-0248(99)00068-9
- Kang, M. G.; Park, N.-G.; Chang, S. H.; Choi, S. H.; Kim, K.-J.Bull. Korean Chem. Soc. 2002, 23, 140. https://doi.org/10.5012/bkcs.2002.23.1.140
- Kang, T.-S.; Moon, S.-H.; Kim, K.-J. J. Electrochem. Soc. 2002,149, E155. https://doi.org/10.1149/1.1467367
- Hong, J. S.; Joo, M.; Vittal, R.; Kim, K.-J. J. Electrochem. Soc.2002, 149, E493. https://doi.org/10.1149/1.1518486
- Park, N.-G.; Chang, S. H.; van de Lagemaat, J.; Kim, K.-J.; Frank,A. J. Bull. Korean Chem. Soc. 2000, 21, 985.
- Holden, J. M.; Zhou, P.; Bi, X.X.; Eklund, P. C.; Bandow, S.; Jishi,R. A.; Chowdhury, K. D.; Dresselhaus, G.; Dresselhaus, M. S.Chem. Phys. Lett. 1994, 220, 186. https://doi.org/10.1016/0009-2614(94)00154-5
- Vincent, P.; Brioude, A.; Journet, C.; Rabaste, S.; Purcell, S. T.; LeBrusq, J.; Plenet, J. C. J. Non-Cryst. Solids 2002, 311, 130. https://doi.org/10.1016/S0022-3093(02)01371-6
- Park, N.-G.; Schlichthorl, G.; van de Lagemaat, J.; Cheong, H.M.; Mascarenhas, A.; Frank, A. J. J. Phys. Chem. B 1999, 103,3308. https://doi.org/10.1021/jp984529i
- Hauch, A.; Kern, R.; Feeber, J.; George, A.; Luther, J. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion; Vienna, 1998; p 260.
- Kang, T. S.; Chun, K. H.; Hong, J. S.; Moon, S. H.; Kim, K. J. J.Electrochem. Soc. 2000, 147, 3049. https://doi.org/10.1149/1.1393646
- Schwartsburg, K.; Willig, F. Appl. Phys. Lett. 1991, 58, 2520. https://doi.org/10.1063/1.104839
- Qian, X.; Qin, D.; Song, Q.; Bai, Y.; Li, T.; Tang, X.; Wang, E.;Dong, S. Thin Solid Films 2001, 385, 152. https://doi.org/10.1016/S0040-6090(01)00771-4
- Diamant, Y.; Chen, S. G.; Melamed, O.; Zaban, A. J. Phys. Chem.B 2003, 107, 1977. https://doi.org/10.1021/jp027827v
Cited by
- Electrochemistry and Photocurrent Response from Vertically-Aligned Chemically-Functionalized Single-Walled Carbon Nanotube Arrays vol.158, pp.3, 2011, https://doi.org/10.1149/1.3527057
- TiO2 Composing with Pristine, Metallic or Semiconducting Single-Walled Carbon Nanotubes: Which Gives the Best Performance for a Dye-Sensitized Solar Cell vol.13, pp.10, 2012, https://doi.org/10.1002/cphc.201200156
- Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells vol.14, pp.13, 2012, https://doi.org/10.1039/c2cp00035k
- Effect of single-wall carbon nanotubes on the properties of polymeric gel electrolyte dye-sensitized solar cells vol.18, pp.3, 2014, https://doi.org/10.1007/s10008-013-2302-1
- An in-depth review on the role of carbon nanostructures in dye-sensitized solar cells vol.3, pp.35, 2015, https://doi.org/10.1039/C5TA03644E
- Photoelectrochemical Cells vol.37, pp.8, 2016, https://doi.org/10.1002/bkcs.10837
- Rutile TiO2-modified multi-wall carbon nanotubes in TiO2 film electrodes for dye-sensitized solar cells vol.36, pp.12, 2006, https://doi.org/10.1007/s10800-006-9238-4
- Nanowire/Nanoparticle Composite Electrodes for Dye-Sensitized Solar Cells vol.54, pp.3, 2007, https://doi.org/10.2497/jjspm.54.202
- Carbon nanotube-modified electrodes for solar energy conversion vol.1, pp.1, 2008, https://doi.org/10.1039/b805419n
- Nanostructured dye solar cells on flexible substrates-Review vol.33, pp.13, 2009, https://doi.org/10.1002/er.1605
- nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells vol.20, pp.33, 2009, https://doi.org/10.1088/0957-4484/20/33/335706
- Electric-Field Enhancement of Photovoltaic Devices: A Third Reason for the Increase in the Efficiency of Photovoltaic Devices by Carbon Nanotubes vol.22, pp.20, 2010, https://doi.org/10.1002/adma.200903841
- Uniform Field Emission from Carbon Nanotubes Fabricated by CO Disproportionation vol.24, pp.12, 2003, https://doi.org/10.5012/bkcs.2003.24.12.1827
- Dependence of TiO2 Film Thickness on Photocurrent-Voltage Characteristics of Dye-Sensitized Solar Cells vol.25, pp.5, 2003, https://doi.org/10.5012/bkcs.2004.25.5.742
- Enhancement in Performance of Dye-Sensitized Solar Cells Modified with In Situ Photopolymerized PDEA in TiO[sub 2] Films vol.152, pp.7, 2005, https://doi.org/10.1149/1.1931429
- Photoinduced Superhydrophilicity in TiO2 Thin Films Modified with WO3 vol.26, pp.10, 2003, https://doi.org/10.5012/bkcs.2005.26.10.1515
- Photocurrent Response from Vertically Aligned Single-Walled Carbon Nanotube Arrays vol.114, pp.14, 2003, https://doi.org/10.1021/jp1003193
- Two-Photon Chemistry in Ruthenium 2,2′-Bipyridyl-Functionalized Single-Wall Carbon Nanotubes vol.16, pp.24, 2003, https://doi.org/10.1002/chem.200903506
- Two-Photon Chemistry in Ruthenium 2,2′-Bipyridyl-Functionalized Single-Wall Carbon Nanotubes vol.16, pp.24, 2003, https://doi.org/10.1002/chem.200903506