## Palladium-Catalyzed Addition of Organoboronic Acids to Conjugated Alkynecarboxylates

## Chang Ho Oh\* and Jin Hyang Ryu

Department of Chemistry, Hanyang University, Sungdong-Gu, Seoul 133-791, Korea Received July 7, 2003

Key Words: Palladium, Hydroarylation, Hydroalkenylation, Alkynecarboxylate

Miyaura discovered the addition of organoboronic acids to  $\alpha\beta$ -unsaturated ketones by a rhodium-phosphine complex in 1997. Since then, transition metal-catalyzed addition to unsaturated bonds with organometallic compounds has been a subject of intensive work in the area of organic and organometallic chemistry. Use of the chiral BINAP-rhodium catalyst was further demonstrated to achieve asymmetric additions of organoboronic acids to various carbonyl compounds. The rhodium-catalyzed addition of arylboronic acids to unactivated alkenes and alkynes were also accomplished. Similar hydroarylations have been attained by nickel-catalyzed addition of organometallic compounds to the alkynes or by titanium-catalyzed hydrozincation of alkynes.

Although the Rh-catalyzed hydroarylation of alkynes has advantages over other methods due to high syn-selectivity and high efficiency, this reaction has a severe limitation applicable to only internal alkynes and arylboronic acids. Recently, we reported Pd-catalyzed hydroarylation which has widely applicable to terminal alkynes as well as internal alkynes.<sup>6</sup> In continuation of our research program, we have carried out a study aimed toward developing regio- and stereoselective Pd-catalyzed hydroarylation and hydroalkenylation of unsymmetrical alkynes.

Here we wish to report that palladium complexes catalyze hydroarylation (and hydroalkenylation) of conjugated alkynecarboxylates, where high regioselectivity and syn-stereoselectivity can be attained by properly choosing the ligand and the reaction conditions. First, we reexamined the reaction of alkyne 1a with phenylboronic acid 2a under a variety of conditions to obtain better regioselectivity (Table 1). When the reaction of alkyne 1a with phenylboronic acid 2a in the presence of 3 mol% Pd(PPh<sub>3</sub>)<sub>4</sub> and 10 mol% AcOH was conducted in 1,4-dioxane at 50 °C for 15h, a 19:1 mixture of the addition products 3aa and 4aa was isolated in combined 97% yield (entry 1). This reaction worked quite well in both protic solvent such as ethanol and aprotic solvents such as THF, chloroform, although toluene resulted in a little lower yield of the products (entry 2-5). Among these solvents we tested, 1,4-dioxane and chloroform turned out to be the best in terms of reaction efficacy and regioselectivity. Next, the catalytic activity of palladium acetate toward this reaction was screened in combination with various ligands. Palladium complexes formed with palladium

\*Corresponding author. Tel: ±82-2-2290-0932; Fax: ±82-2-2299-0762; E-mail: changho@hanyang.ac.kr

acetate and triphenylphosphine catalyzed this reaction in almost same manner as Pd(PPh<sub>3</sub>)<sub>4</sub> (entry 6). The bidentate ligands, dppe, dppp, dppb, or dppf, have shown a dramatic increase in regioselectivity (entry 7-10). A combination of Pd(OAc)<sub>2</sub> and dppe catalyzed this reaction to give the product **3aa** in 96% isolated yield and 99% isomeric purity in gram-scale reaction (entry 7).

This implied that the catalytic activity of palladium

**Table 1.** Pd-Catalyzed Hydroarylation/alkenylation of Alkynes **1a** with Organoboronic Acids **2a** at 50 °C under various conditions

| n-Bu- | =-COOEI Ph-B OH 2  2                        | Ph -                 | OOEt n- | Bu CO    | DEt (T) |
|-------|---------------------------------------------|----------------------|---------|----------|---------|
|       | 1a AcOH (10 mols                            | %) <sup>Pn</sup> 3aa |         | 4aa      |         |
| entry | Pd compds (3 mol%)                          | Solvent              | Time    | Isolated | 3:4     |
|       | Ligands (6 mol%)                            |                      | (h)     | Yield, % | ratio"  |
| 1     | Pd(PPh <sub>3</sub> ) <sub>4</sub>          | 1.4-dioxane          | 15      | 97       | 95:5    |
| 2     | $Pd(PPh_3)_4$                               | ethanol              | 15      | 83       | 90:10   |
| 3     | $Pd(PPh_3)_4$                               | toluene              | 15      | 72       | 90:10   |
| 4     | $Pd(PPh_3)_4$                               | THF                  | 15      | 86       | 85:15   |
| 5     | Pd(PPh <sub>3</sub> ) <sub>4</sub>          | chloroform           | 15      | 97       | 97:3    |
| 6     | Pd(OAc) <sub>2</sub> /PPh <sub>3</sub>      | chloroform           | 15      | 95       | 20:1    |
| 7     | Pd(OAc)2/dppe                               | chloroform           | 5       | 96       | 99:1    |
|       |                                             | 1,4-dioxane          | 5       | 93       | 99:1    |
| 8     | Pd(OAc)2/dppp                               | chloroform           | 5       | 80       | 98:2    |
| 9     | Pd(OAc)₂/dppb                               | chloroform           | 5       | 76       | 98:2    |
| 10    | Pd(OAc)₂/dppf                               | chloroform           | 5       | 72       | 92:8    |
| 11    | Pd(OAe) <sub>2</sub> /(t-Bu) <sub>3</sub> P | chloroform           | 5       | 82       | 1:1     |
| 12    | $Pd(OAe)_2/(t-Bu)_3P$                       | 1.4-dioxane          | 5       | 89       | 1:4     |
| 13    | Pd(OAc)2/(t-Bu)3P                           | THF                  | 5       | 78       | 1:6     |

<sup>&</sup>quot;The product ratios were determined by integrations of specific peaks in <sup>1</sup>H NMR spectra of the crude products.

Scheme 1

Table 2. Pd-Catalyzed Hydroarylation/alkenvlation of Alkynes 1a-d with Organoboronic Acids 2 in the presence of 10 mol% AcOH

| # | Alkynes (1) | RB(OH) <sub>2</sub> (2) | conditions, temp<br>(°C), time (h) | Products | % Yield<br>(ratio) | #  | Alkynes (1) | RB(OH) <sub>2</sub> (2) | conditions, temp<br>(°C), time (h) | Products | % Yield (ratio) |
|---|-------------|-------------------------|------------------------------------|----------|--------------------|----|-------------|-------------------------|------------------------------------|----------|-----------------|
| 1 | 1a          | 2b                      | A, 60, 12                          | 3ab      | 89                 | 7  | 1b          | 2¢                      | $A, 50, 10^a$                      | 3bc, 4bc | 75 (3:1)        |
|   |             |                         | B, 60, 8                           | 3ab, 4ab | 53 (1:20)          |    |             |                         | B, 60, 4                           | 3bc, 4bc | 95 (1:4)        |
| 2 | 1a          | 2c                      | A, 60, 27 <sup>a</sup>             | 3ac, 4ac | 71 (7:1)           | 8  | 1b          | 2d                      | A, 50, 10                          | 3bd, 4bd | 80 (5:1)        |
|   |             |                         | B, 60, 4                           | 3ac, 4ac | 88 (1:5)           |    |             |                         | B, 60, 4                           | 3bd, 4bd | 86 (1:3)        |
| 3 | 1a          | 2d                      | A, 50, 20                          | 3ad      | 86 (20:1)          | 9  | 1¢          | 2¢                      | A, 80, 24 <sup>a</sup>             | 3ec, 4ec | 75 (1:50)       |
|   |             |                         | B, 35, 24                          | 3ad, 4ad | 89 (1:6)           |    |             |                         | B, 60, 20                          | 3cc, 4cc | 71 (1:50)       |
| 4 | 1a          | 2e                      | A, 50, 22                          | 3ae      | 67                 | 10 | 1¢          | 2d                      | A, 80, 24 <sup>a</sup>             | 3cd, 4cd | 51 (1:4)        |
|   |             |                         | B, 50, 12                          | 3ae, 4ae | 98 (1:3)           |    |             |                         | B, 60, 4                           | 4cd      | 94              |
| 5 | 1a          | 2f                      | A, 50, 20                          | 3af      | 83                 | 11 | 1d          | 2¢                      | $A, 70, 8^a$                       | 3dc, 4dc | 98 (5:1)        |
|   |             |                         | B, 60, 4                           | 3af, 4af | 51 (1:7)           |    |             |                         | B, 60, 8                           | 3dc, 4dc | 89 (1:2)        |
| 6 | 1a          | 2g                      | A, 60, 20°                         | 3ag, 4ag | 88 (5:1)           | 12 | 1d          | 2d                      | $A, 70, 4^a$                       | 3dd, 4dd | 98 (4:1)        |
|   |             |                         | B, 60, 5                           | 3ag, 4ag | 86 (1:3)           |    |             |                         | B, 50, 24                          | 3dd, 4dd | 94 (1:2)        |

<sup>&</sup>quot;Reactions were done in 1,4-dioxane in stead of in chloroform.

complexes as well as the regioselectivity in the present reaction is associated with steric and electronic nature of the phosphine ligand. When we tested tri(tert-butyl)phosphine as a ligand under the present conditions, the regioisomeric ratio of the products 3aa and 4aa was changed to 1 : 1 (entry 11). The regioselectivity in the products 3aa and 4aa was further reversed to 1:4 ratio when this reaction was conducted in 1.4-dioxane. This reverse regioselectivity was increased up to 1:6 in THF solvent. Thus, these two different conditions have been applied to a series of conjugated alkynecarboxvlates 1a-d with arylboronic acids (2a-c) and alkenylboronic acids (2d and/or 2e) (Scheme 1). Our results are summarized in Table 2. When a combination of palladium acetate and dppe in chloroform or in 1,4-dioxane (method A) was subjected to 1a with various organoboronic acids 2b-g, the products 3ab-ag were obtained as major products.

In the other hand, when a combination of palladium acetate and tri(tert-butyl)phosphine in THF (method B) was subjected to 1a with the same organoboronic acids, the products 4ab-ag were obtained as major products along with the products 3ab-3ag as minor products, ranging from 3:1 to 20: 1 ratios.

The reverse regioselectivities are very interesting. Thus, we chose two organoboronic acids. 4-methoxyphenylboronic acid (2c) and hexenvlboronic acid (2d) and tested three alkynecarboxylates 1b-1d. When 1b was reacted with the boronic acid 2c under condition A. the reaction furnished the product 3bc and the 4bc in a ratio of 3 to 1 (entry 7). The same reaction under condition B resulted in reverse regioselectivity of 1 to 4. The substrate 1b with hexenylboronic acid 2d resulted in the similar trend, where condition A gave the products 3bd and 4bd in 5:1 ratio, while condition B gave the reverse regioselectivity of 1:3. Then, we prepared a sterically hindered substrate 1c.7 When 1c was reacted with the boronic acid 2c under condition A, the reaction furnished the 4cc almost exclusively (entry 9). The same reaction under condition B resulted in exclusive formation of the 4cc. The substrate 1c with hexenvlboronic acid 2d resulted in the similar trend, where both condition A and condition **B** gave the 4cd as a major product.

Finally, we prepared ethyl phenylacetylenecarboxylate 1d and tested with the boronic acid 2c and 2d. As expected, the reaction of 1d with 2c and with 2d under condition A gave the products 3dc and 3dd, respectively. Similarly, the same reaction with 2c and with 2d under condition B gave the products 4dc and 4dd as major products, respectively (entry 12).

In conclusion, we have shown dramatic change in regioselectivity when organoboronic acids added to alkynecarboxylates under palladium catalysis.

Acknowledgments. We wish to acknowledge the financial support of Korea Research Foundation (2001-015-DP0334). Korea, and Center of Molecular Design and Synthesis (CMDS).

## References

- 1. For Pd-catalyzed Route to tetrasubstituted Olefins: see, Zhou, C.; Emrich, D. E.; Larock, R. C. Org. Lett. 2003, 5, 1579
- Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16, 4229.
- 3. (a) Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem. 1998, 110. 3475; Angew. Chem., Int. Ed. Engl. 1998, 37, 3279. (b) Ueda. M.; Miyaura, N. J. Org. Chem. 2000, 65, 4450. (c) Ueda, M.; Miyaura. N. J. Organomet. Chem. 2000, 595, 31. (d) Hayashi, T.: Senda, T.; Takava, Y.; Ogasawara, M. J. Am. Chem. Soc. 1999, 121, 11591. (e) Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1998, 39, 8479. (f) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579. (g) Sakuma. S.; Sakai, M.; Itooka, R.; Miyaura, N. J. Org. Chem. 2000, 65, 5951.
- 4. (a) Hayashi, T.: Inoue, K.: Taniguchi, N.: Ogasawara, M. J. Am. Chem. Soc. 2001, 123, 9918. (b) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem. Soc. 2000, 122, 10464. (c) Lautens, M.: Roy, A.; Fukuoka, K.; Martin-Matute, B. J. Am. Chem. Soc. 2001. 123, 5358. (d) Lautens, M.; Yoshida, M. Org. Lett. 2002, 4, 123. (e) Lautens, M.; Roy, A.: Fukuoka, K.: Fagnou, K.; Martin-Mature, B. J. Am. Chem. Soc. 2001, 123, 5358. (f) Boiteau, J.; Imbos, R.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2003, 5, 681.
- 5. (a) Shirakawa, E.; Takahashi, G.; Tsuchimoto, T.; Kawakami, Y. Chem. Commun. 2001, 2688. For a review on the Ni-catalyzed addition: (b) Houpis, I. N.; Lee, J. Tetrahedron 2000, 56, 817. (c) For a review on the organozine reagents: Knochel, P.: Almena Perea, J. J.; Jones, P. Tetrahedron 1998, 54, 8275.
- 6. (a) For a review on the organotitanium reagents: Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100, 2835. (b) Gao, Y.; Harada, K.; Hata, T.; Urabe, H.; Sato, F. J. Org. Chem. 1995, 60, 290.
- 7. Oh. C. H.; Jung, H. H.; Kim, K. S. Angew. Chem., Int. Engl. Eds. **2003**, 42, 805.