DOI QR코드

DOI QR Code

Stability of Tris(2-cyclohexylaminoethyl)amine-Zn(II) Complex

Tris(2-cyclohexylaminoethyl)amine-Zn(II) 착물의 안정성

  • Yong Woon Shin (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang Nation University) ;
  • Hyun Sook Baek (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang Nation University) ;
  • Jae-Kyung Yang (Laboratory of Forest Chemistry. Faculty of Forest Science, Gyeongsang National University) ;
  • Jineun Kim (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang Nation University) ;
  • Moo Lyong Seo (Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang Nation University)
  • 신용운 (경상대학교 화학과 및 기초과학연구소) ;
  • 백현숙 (경상대학교 화학과 및 기초과학연구소) ;
  • 양재경 (경상대학교 산림과학부) ;
  • 김진은 (경상대학교 화학과 및 기초과학연구소) ;
  • 서무룡 (경상대학교 화학과 및 기초과학연구소)
  • Published : 2003.04.20

Abstract

Tris(2-cyclohexylaminoethyl)amine (L) was synthesized by the Schiff base condensation reaction of tris(2-aminoethyl)amine with cyclohexanone, followed by reduction. The thermodynamic characteristics, mole ratio and formation constant of [Zn(II)-L] complex were measured by the cyclic voltammetry and isothermal titration. In the case of Zn(II), well-defined cathodic and anodic peak were obtained at -1.02V and -0.48V vs Ag/AgCl , respectively. For the [Zn(II)-L] complex, both peaks were obtained at -1.19V and -0.45V vs Ag/AgCl, respectively. In addition, the peak height gradually increases as the scan rate increases, suggesting that the currents obtained were diffusion - controlled. The mole ratio and stability constant of the complex measured cyclic voltammerty were 1:1 and logK$_f$= 5.8, respectively. And the mole ratio and stability constant of the complexe calculated by isothermal titration method was 1:1 and logK =5.4, respectively. ${\Delta}$H, ${\Delta}$G and T${\Delta}$S for the complex formation were -53.0 kJ/mol, -31.1 kJ/mol, and -21.9 J/K at 25 ${\circ}$C, respectively.

Cyclohexanone,과 tris(2-aminoethyl)amine을 이용하여 Schiff 연기 축합반응으로 tren의 유도체인 tris(2-cyclohexylaminoethyl)amine (L)을 합성하였다. 또한 합성한 tren의 유도체인 tris(2-cyclohexylaminoethyl)amine (L)과 Zn(II) 착물의 열역학적 특성과 안정도 상수, Zn(II)와의 착물 조성비 등을 순환전압전류법과 열량계법으로 측정하였다. Zn(II)과 [Zn(II)-L] 순환전압전류 곡선을 0${sim}$-1.5 V vs. Ag/AgCl의 가전압 범위에서 측정하였다. 금속인 경우, -1.02V와 -0.48V vs. Ag/AgCl에서 각각 환원피이크와 산화피이크가 나타났으며, 금속착물인 경우에는 -1.19V와 -0.45V vs. Ag/AgCl에서 각각 환원피이크와 산화피이크가 나타났다. 또한 피이크 전류(IP)는 주사속도의 평방근 $(v^{1/2})$에 비례하였으며 이것은 전류의 유형이 확산 지배적인 전류임을 나타낸다. 그리고 [Zn-L] 착물에 대해서 전압전류법적으로 구한 안정도상수는 logK$_f$ = 5.8, 결합비는 1:1을 나타내었다. 또한 열량계법적으로 [Zn-L] 착물의 열역학적 파라메타를 조사한 결과, 리간드 L과 Zn(II)는 1:1의 4 배위수를 가지는 착물을 이룬다는 것을 알 수 있었고, 이때 25 ${\circ}$C에서 logK=5.4, ${\Delta}H$= -53.0 kJ/mol, ${\Delta}$G의 값은 -31.1 kJ/mol이었으며 T${\Delta}$S는 -21.9 J/K${\cdot}$mole이었다.

Keywords

References

  1. Bhattacharyya, P.; Parr, J.; Ross, A. T.; Slawin, A. M. Z. J. Chem. Soc., Dalton Trans. 1998, 3149-3150.
  2. Bhattacharyya, P.; Parr J.; Slawin, A. M. Z. J. Chem. Soc. Dalton Trans. 1998, 3263-3267.
  3. Appertey, D. C.; Clegg, W.; Colos, S.; Coyle, J. L.; Martin, N.; Maubert, B.; Mckee, V.; Nelson., J. J. Chem. Soc. Dalton Trans. 1999, 229-236. https://doi.org/10.1021/ac00039a011
  4. Ruf, M.; Vahrenkamp, H. Inorg. Chem. 1996, 35, 6571-6578. https://doi.org/10.1021/cr00034a002
  5. Escuer, A.; Harding, C. J.; Dussart, P.; Nelson, J.; Mckee, V.; Vicente, R. J. Chem. Soc. Dalton Trans.,1999, 223-227. https://doi.org/10.1021/ic00082a009
  6. Spirlet, M. R.; Rebizant, J.; Wang, X.; Jin, T.; Gilsoul, D.; Comblin, V.; Maton, F.; Muller, R. N.; Desreux, J. F. J. Chem. Soc. Dalton Trans., 1997, 497-500. https://doi.org/10.1021/ic00087a036
  7. Pedersen, C. J. J. Am. Chem. Soc., 1967, 89, 701-706. https://doi.org/10.1021/ic990027n
  8. Tummer, B. J. Am. Chem. Soc., 1977, 99, 4683-4687. https://doi.org/10.1021/cr60092a001
  9. Inoue, M. B.; Santacruz, H.; Inoue, M.; Fernando, Q.Inorg. Chem., 1999, 38, 1596-1602. https://doi.org/10.1021/ac00217a002
  10. Costa, J.; Delgado, R.; Figueira, M. D. C.; Henriques, R. T.; Teixeira, M. J. Chem. Soc. Dalton Trans., 1997,65-73.
  11. Walkowiak, W.; Ndip, G. M.; Desai, D. H.; Lee H. K.; Bartsch, R. A. Anal. Chem., 1992, 64, 1685-1690. https://doi.org/10.1021/ac00039a011
  12. Alexander. V. Chem. Rev., 1995, 95, 273-342. https://doi.org/10.1021/ic960335a
  13. Connolly, J. A.; Banaszcyk, M.; Hynes, R. C.; Chin, J.Inorg. Chem., 1994, 33, 665-669. https://doi.org/10.1021/ic00082a009
  14. Wei, N.; Murthy, N. N.; Chen, Q.; Zubieta, J.; Karlin, K. D. Inorg. Chem., 1994, 33, 1953-1965. https://doi.org/10.1021/ic00087a036
  15. Rybak-Akimova, E. V.; Nazarenko, A. Y.; Silchenko, S. S. Inorg. Chem. 1999, 38, 2974-2980. https://doi.org/10.1021/ja00979a048
  16. Lingane, J. J. Chem. Rev., 1941, 29, 1. https://doi.org/10.1021/ja00456a026
  17. Freire, E.; Straume, M. Anal. Chem., 1990, 62, 950A-959A. https://doi.org/10.1021/ic981015p