DOI QR코드

DOI QR Code

The Homodimerization of Thalictrum tuberosum O-Methyltransferases by Homology-based Modelling

  • Yang, Hee-Jung (Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Bio/Molecular Informatics Center, Konkuk University) ;
  • Jeong, Karp-Joo (Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Sang-San (Supercomputing Center, Korea Institute of Science and Technology Information) ;
  • Lim, Yoong-Ho (Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2003.09.20

Abstract

Two O-methyltransferases, OMTII-1 and OMTII-4 of meadow rue Thalictrum tuberosum showed a high sequence identity. Of 364 amino acids only one residue is not the same, which is Tyr21 or Cys21. Even if the 21st residues in these OMTs are not included in the binding sites of the enzymes, binding affinities of the enzyme homodimers over the same substrate are very different. While the binding affinity of one homodimer over caffeic acid is 100%, that of the other is 25%. Authors tried to predict the three-dimensional structures of Thalictrum tuberosum O-methyltransferases using homology-based modelling by a comparison with caffeic acid O-methyltransferase, and explain the reason of the phenomenon mentioned above based on their three dimensional structural studies. In the enzyme homodimer, the better binding affinity may be caused by the shorter distance between the 21st residue and the binding site of the other monomer.

Keywords

References

  1. Dixon, R. A. Nature 2001, 411, 843. https://doi.org/10.1038/35081178
  2. Maury, S.; Geoffroy, P.; Legrand, M. Plant Physiol. 1999, 121,215. https://doi.org/10.1104/pp.121.1.215
  3. Zhong, R.; Morrison, W. H. III; Himmelsbach, D. S.; Poole, F. L.;Ye, Z. H. Plant Physiol. 2000, 124, 563. https://doi.org/10.1104/pp.124.2.563
  4. Schaller, H.; Bouvier-Nave, P.; Benveniste, P. Plant Physiol. 1998,118, 461. https://doi.org/10.1104/pp.118.2.461
  5. Wang, J.; Pichersky, E. Arch. Biochem. Biophy. 1999, 368, 172. https://doi.org/10.1006/abbi.1999.1304
  6. Ibrahim, R. K.; Bruneau, A.; Bantignies, B. Plant Mol. Biol. 1998,36, 1. https://doi.org/10.1023/A:1005939803300
  7. Muzac, I.; Wang, J.; Anzellotti, D.; Zhang, H.; Ibrahim, R. K.Arch. Biochem. Biophy. 2000, 375, 385. https://doi.org/10.1006/abbi.1999.1681
  8. Eckardt, N. A. Plant Cell. 2002, 14, 1185. https://doi.org/10.1105/tpc.140610
  9. Moon, J. K.; Kim, J.; Rhee, S.; Kim, G.; Yun, H.; Chung, B.; Lee,S.; Lim, Y. Bull. Korean Chem. Soc. 2002, 23, 1545. https://doi.org/10.5012/bkcs.2002.23.11.1545
  10. Choe, J.; Chang, S. Bull. Korean Chem. Soc. 2002, 23, 48. https://doi.org/10.5012/bkcs.2002.23.1.048
  11. Frick, S.; Kutchan, T. M. Plant J. 1999, 17, 329. https://doi.org/10.1046/j.1365-313X.1999.00379.x
  12. Wilmouth, R.; Turnbull, J.; Welford, R.; Clifton, I.; Prescott, A.;Schofield, C. The Protein Data Bank. Structure (London) 2002,10, 93.
  13. Van Aalten, D. M. F.; Crielaard, W.; Hellingwerf, K. J.; Joshua-Tor, L. Acta Crystallogr. Sect. D 2002, 58, 585. https://doi.org/10.1107/S0907444902001257
  14. Yoon, E. Y. Bull. Korean Chem. Soc. 2001, 22, 293.
  15. Gauthier, A.; Gulick, P. J.; Ibrahim, R. K. Arch. Biochem. Biophy.1998, 351, 243. https://doi.org/10.1006/abbi.1997.0554
  16. Zubieta, C.; Kota, P.; Ferrer, J.; Dixon, R. A.; Noel, J. P. Plant Cell2002, 14, 1265. https://doi.org/10.1105/tpc.001412

Cited by

  1. Relationships between the larval growth inhibition ofCaenorhabditis elegans by apigenin derivatives and their structures vol.29, pp.7, 2006, https://doi.org/10.1007/BF02969269
  2. Stereochemical Elucidation of Norbornene Derivatives Synthesized as Leukotriene D4 Receptor Antagonists vol.36, pp.5, 2003, https://doi.org/10.1081/sl-120026607
  3. Complete Assignments of the 1H and 13C NMR Data of Flavone Derivatives vol.26, pp.4, 2003, https://doi.org/10.5012/bkcs.2005.26.4.603
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450