DOI QR코드

DOI QR Code

Trace Mercury Determination by Differential Pulse Anodic Stripping Voltammetry Using Polythiophene-Quinoline/Glassy Carbon Modified Electrode

  • Published : 2003.01.20

Abstract

A Polythiophene-quinoline/glassy carbon (PTQ/GC) modified electrode was developed for the determination of trace mercury in industrial waste water, natural water, soil, and other media. The electrode was prepared by the cyclic voltammetric polymerization of thiophene and quinoline on glassy carbon (GC) electrode by the potential application from -0.6 V to +2.0 V (50 mV/sec) in a solution of 0.1 M thiophene, quinoline and tetrabutyl ammonium perchlorate (TBAP) in acetonitrile. Optimum thickness of the polymer membrane on the GC electrode was obtained with 20 repeated potential cyclings. The redox behavior of Cu(Ⅱ) and Hg(Ⅱ) were almost identical on this electrode. The addition of 4-(2-pyridylazo)resorcinol (PAR) to the solution containing Cu(Ⅱ) and Hg(Ⅱ) allowed the separation of the components due to the formation of the Cu(Ⅱ)-PAR complex reduced at -0.8V, which was different from the Hg(Ⅱ) reduced at -0.5 V on a saturated calomel electrode (SCE). The calibration graph of Hg(Ⅱ) shows good linear relationship with the correlation factor of 0.9995 and the concentration gradient of 0.33 ㎂/㎠/ppb down to 0.4 ppb Hg. The method developed was successfully applied to the determination of mercury in samples such as river, waste water, and sea water.

Keywords

References

  1. Park, J. S.; Gil, K. S.; Park, K. L.; Kim, M. S. Chemistry World(Korea) 1998, 38(9), 16.
  2. Gil, E. P.; Ostapczuk, P. Anal. Chim. Acta 1994, 293(1-2), 55. https://doi.org/10.1016/0003-2670(94)00075-1
  3. Stresko, V.; Polakovicova, J.; Kubova, J. Anal. At. Spectrom. 1994,9(10), 1173. https://doi.org/10.1039/ja9940901173
  4. Lugowska, M.; Rubel, S.; Styczen, A. Chem. Anal. (Warsaw)1987, 32(3), 329-337.
  5. Bulska, E.; Emteborg, H.; Baxton, D. C.; Frech, W.; Ellingson, D.;Thomasse, Y. Analyst 1992, 117(3), 657. https://doi.org/10.1039/an9921700657
  6. Colina, V. M.; Romero, R. A. Analyst 1992, 117(3), 646.
  7. Suo, Y.; Yi, F.; Huang, Y. Fenxi Huaxue 1992, 20(3), 335.
  8. Sancho, D.; Deban, L.; Barbosa, F.; Pardo, R.; Vega, M. FoodChem. 2001, 74, 527. https://doi.org/10.1016/S0308-8146(01)00177-7
  9. Turyan, I.; Mandler, D. Electroanal. (N. Y.) 1994, 6(10), 838. https://doi.org/10.1002/elan.1140061005
  10. Somer, G.; Kalayci, S.; Ekmekci, G. Sensors and Actuators B2001, 81, 122. https://doi.org/10.1016/S0925-4005(01)00942-X
  11. Ijeri, V. S.; Srivastava, A. K. Fresenius J. Anal. Chem. 2000, 7(4),373.
  12. Song, F. Y.; Shiu, K. K. J. of Electroanal. Chem. 2001, 498, 161. https://doi.org/10.1016/S0022-0728(00)00360-0
  13. Konvalina, J.; Khaled, E.; Vytras, K. Collect. Czech. Chem.Commun. 2000, 65(6), 1047. https://doi.org/10.1135/cccc20001047
  14. Tekutskaya, E. E.; Kondrat, V. V.; Esipova, M. V. Zh Anal. Khim.1999, 54(12), 1142.
  15. Bard, A. J. Electroanal. Chemistry, Vol 13; Mercel Dekker Inc.:New York, 1986; ch 10.
  16. Santos, J. H.; Smythm, M. R.; Blanc, R. Anal. Commum. 1998,35, 345. https://doi.org/10.1039/a806151c
  17. Tourillon, G.; Grarnier, F. J. Electroanal. Chem. 1983, 135, 2024.
  18. Skotheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook ofConducting Polymers, 2nd ed.; Mercel Dekker Inc.: New York,1994; p 531.
  19. Chung, T. C.; Kaufman, J. H.; Heeger, J.; Wudl, F. Phys. Rev. B1984, 30(2), 702. https://doi.org/10.1103/PhysRevB.30.702
  20. Nalwa, H. S. Handbook of Organic Conductive Molecules and Polymers, Vol. 2; John Wiley & Sons: Chichester, 1997; p 468.
  21. Cha, S. K.; Chung, J. J.; Park, E. H.; Cha, C. K.; Abruna, H. D. J. Mar. Sci. 1993, 28, 6155.
  22. EPA method 7470a, Cincinnati, U.S. Environmental Protection Agency, USA, 2002.
  23. EPA method 7471a, U.S. Environmental Protection Agency, Cincinnati, USA, 2002.
  24. Cook Book for AAS; Shimadzu press: Shmadzu Co, Tokyo, 1994.
  25. http://www.varianinc.com/osi/aa/atworks/aa032.pdf22.
  26. Baklanov, A. N.; Chmilenko, F. A. J. Anal. Chem. 2001, 6(7), 641.
  27. McDaniel, R. L.; Torrence, K. M.; Self, D. A. J. Chang Beitr.Tabakforsch. Int. 2001, 19(5), 267.
  28. Brunetto, M. R.; Luna, J. R.; Zambrano, A.; Gallignani, M.;Burguera, M.; Burguera, J. L.; Petit de Pena, Y. Analyst 1999,124(10), 1493. https://doi.org/10.1039/a904131a
  29. Berhmans, S.; Arivukkodi, S.; Yegnaraman, V. Electrochem.Commun. 2000, 2(4), 226. https://doi.org/10.1016/S1388-2481(00)00002-3
  30. Faller, C.; Stojko, N. Y.; Henze, G.; Brainina, Kh. Z. Anal. Chim.Acta 1999, 396(2-3), 195. https://doi.org/10.1016/S0003-2670(99)00434-1
  31. Yoo, K. S.; Woo, S. B. Bull. Korean Chem. Soc. 2001, 22(10),1141.

Cited by

  1. Sequential voltammetric determination of mercury(II) and toxic metals in environmental bio-monitors: application to mussels and clams vol.90, pp.1, 2010, https://doi.org/10.1080/03067310802706611
  2. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis vol.5, pp.2, 2015, https://doi.org/10.3390/bios5020241
  3. Anodic stripping voltammetric determination of Hg(II) using poly xylenol orange film modified electrode pp.1862-0760, 2019, https://doi.org/10.1007/s11581-018-2704-2
  4. vol.30, pp.6, 2018, https://doi.org/10.1002/elan.201800097
  5. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review) vol.48, pp.4, 2018, https://doi.org/10.1080/10408347.2017.1422966
  6. Self-doped Anthranilic Acid-Pyrrole Copolymer/Gold Electrodes for Selective Preconcentration and Determination of Cu(I) by Differential Pulse Anodic Stripping Voltammetry vol.23, pp.5, 2007, https://doi.org/10.2116/analsci.23.563
  7. A Selective Film Based on Poly(3-octylthiophene) Doped with Dihydroxyanthraquinone Sulfonate vol.20, pp.16, 2008, https://doi.org/10.1002/elan.200804221
  8. Determination of Mercury by Chronopotentiometric Stripping Analysis Using Glassy Carbon Vessel as a Working Electrode vol.18, pp.5, 2003, https://doi.org/10.1002/elan.200503410
  9. Ion selectivity of a poly(3-pentylmethoxythiophene) LB-layer modified carbon-fiber microelectrode as a consequence of the second order filtering in voltcoulometry vol.70, pp.3, 2003, https://doi.org/10.1016/j.jbbm.2006.09.001
  10. Highly Ordered Macroporous Poly-3,4-ortho-xylendioxythiophene Electrodes as a Sensitive Analytical Tool for Heavy Metal Quantification vol.90, pp.20, 2003, https://doi.org/10.1021/acs.analchem.8b03779