Diastereoselective Synthesis of 1,6-Diepicastanospermine from D-Glucono- $\boldsymbol{\delta}$-lactone

Ki Chang Jang, Sung Jun Choi, Jin Hyo Kim, Jin Hwan Lee, Byong Won Lee, and Ki Hun Park*

Division of Applied Life Science (BK2I program), Deparment of Agricultural Chemistrv.
Gyeongsang National Unversitw. Chimu $660-701$, Korea
Received March 28, 2003

Abstract

Homochiral (-)-pipecolaldehyde 6 from D-glucono- δ-lactone underwent a highly diastereoselective addition upon treatment with vinylmagnesium bromide. Treatment with vinylmagnesium bromide produced antiaminoalcohol 7 a which was easily converted into the synthesis of 1.6 -diepicastanospermine $\mathbf{2}$.

Key Words : 1.6-Diepicastanospermine, Diastereoselective nucleophilic addition, ami-Anuinoalcohol, Vinylmagnesium bromide. D-Glucono- δ-lactone

Introduction

Diastereoselective nucleophilic addition is one of the most reliable synthetic protocols. capable of the selective formation of C-C bond and the introduction of chiral hydrosyl group. ${ }^{1}$ Particularly, a transformation of aminoaldehy'de from carbohydrate containing multiple stereogenic centers to aminoalcohol has attracted great interests among synthetic organic chemists because the resulting chiral aminoalcohol is a useful synthetic synthon for bioactive polyhydroxylated alkaloids. ${ }^{2}$ The related asymmetric synthesis of aminoalcohol has also been applied to synthesis of complex molecular fragments. ${ }^{3}$ Synthetic investigations concerning the nucleophilic addition to $\mathrm{C}=\mathrm{O}$ bonds of aminoaldehyde with alkyl Grinard have demonstrated that ethynyl group offers much better selectivity rather than any other alkyl nucleophiles. ${ }^{+}$ Herein we describe a highly diastereoselective synthesis of anti-aminoalcohol 7a via a simple nucleophilic addition of vinylmagnesium bromide. This anti-aminoalcohol 7a was applied to the synthesis of a castanospermine derivative that consists of piperidine and pyrrolidine rings. We have recently reported simple and convenient routes to piperidine and pyrrolidine alkaloids with chirospecific manners. ${ }^{5}$ As an extension of our previous studies, we prepared 1,6 -diepicastanospermine 2 via diastereoselective nucleophilic addition.

1

2

Figure 1. (+)-Castanospermine and its derivative.
Castanospermine 1 and its stereoisomers isolated from Castonospermum australe ${ }^{6}$ and Alexa leiopetala ${ }^{7}$ exhibit potent activities against diabetes cancer. and viral infection due to their inhibition of glycosidases.

[^0]

Figure 2. Retrosynthesis of target molecule 2.

Results and Discussion

The stereochemistries of C6. C7. C8 and C8a in target molecule 2 were transferred from those of C2, C3, C4 and C 5 in D -glucono- δ-lactone as the starting material. The formation of the two-carbon unit and introduction of the Cl hydroxy group for compound 2 were carried out via nucleophilic addition of vinylnagesium bromide.

The known piperidine 3 was easily accessible via known procedures from D-glucono- δ-lactone. ${ }^{\text {Sd }}$ Piperidine 3 was sequentially protected with 9-phenylfluoren-9-yl (Pf) and TBDMS group to give the protected piperidine 5 in 82% overall yield. We chose the Pf group for amine protection since this protecting group has been shown to prevent deprotonation at α-position of α-amino aldehyde. ${ }^{8} \alpha$-Aminoaldehydes protected with Pf group are stable to enolization under Grignard reaction condition. ${ }^{9}$ Reduction of the ester 5 with DIBAL-H produced the aldehyde 6 in 84% yield. Pipecolaldehyde 6 was stable enough for the purification by silica gel column chromatography. The hydroxy group and the two-carbon unit should be introduced to aldehyde 6 for formation of pyrrolidine ring in the target molecule 2 . Pipecolaldelyde 6 was treated with vinylmagnesium bromide at -40 ${ }^{\circ} \mathrm{C}$ for 20 min to give anti-aminoalcohol 7a via a diastereo-

Scheme 1. Reagents and conditions a. ref. 5d.; b. $\mathrm{PfBr}, \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, Et ${ }_{3} \mathrm{~N} . \mathrm{CH}_{2} \mathrm{Cl} \mathrm{I}_{2}$. rt. 85%; c. TBDMSCl. Imidazole. DMF. rt. 96\%; d. [DBAI.-H, Toluene, $-78{ }^{4} \mathrm{C}, 84 \%$ e. VinylMgBr. THF, $-78^{\circ} \mathrm{C}$.

 MeOH. $60{ }^{\circ} \mathrm{C} .93 \%$ j. Dowex $50 \mathrm{~W}-\mathrm{X8}, 90 \% \mathrm{MeOH}$. reflux. 91%.
selective addition. ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude reaction mixture showed that the reaction afforded a 10:1 mixture of the $a n t i$ and $s y n$ isomers, providing antiaminoalcohol 7 a in 79% yield after chromatographic purification. The stereochemistry of product 7a was deduced from 2D NOESY experiments of final product 2 (Figure 4).

Table 1. Stereoselective nucleophilic addition of aminoaldehyde ${ }^{\prime \prime}$

6

Fnlry	Reagents	Conditions	$\begin{aligned} & \text { Ratio } \\ & 7 \mathrm{a}: 7 \mathrm{~b} \end{aligned}$	Yield (\% $/ 0)^{6}$
1	VinylMgBr	THF/-78 ${ }^{\circ} \mathrm{C}$	$10: 1$	90
2	Viny 1 Mg Br	THF/-40 ${ }^{\circ} \mathrm{C}$	$10: 1$	87
3	Ethy ny JMgBr	THF/-78 ${ }^{\circ} \mathrm{C}$	4:1	90
4	Ally Mg Mr	THF/-40 ${ }^{\circ} \mathrm{C}$	1:2	92
5	Ally l MgBr	THF/-78 ${ }^{\circ} \mathrm{C}$	1:4	90

"All experiments were performed at least in duplicate. "The ratio was determined by ${ }^{\text {l }}$ II NMR analysis of the reaction mixtures. 'Isolated yield.

Figure 3
As shown in Table 1, other nucleophiles were treated to polypipecolaldehyde 6 under the same reaction conditions to afford a less than $4:$ I ratio of anti and $s y n$ isomers. Especially, ethynyl group showed worse selectivity than expected. The ani diastereoselectivity of nucleophilic addition could be explained by the Cram's rule ${ }^{10, a}$ which concisely accommodates favored formation of the anti-aminoalcohol. In contrast, the syn-diastereoselectivity of ally MgBr could be explained by the chelation control model. ${ }^{\text {b }}$

The hydroxyl functionality was protected as silyl ether using TBDMSCl and imidazole, giving silyl ether 8 in high yield. Hydroboration of the alkenyl group in $\mathbf{8}$ with $\mathrm{BH}_{3} \mathrm{SMe}_{2}$ in THF, followed by alkaline hydrogen peroxide oxidation, gave the primary alcohol 9 in 75% yield. Reaction of 9 with MsCl in the presence of triethylamine in THF yielded the mesylate $\mathbf{1 0}$ in quantitative yield. The mesylate $\mathbf{1 0}$ was hydrogenated in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ and NaOAc to remove Pf group. The concomitant intramolecular cyclization occurred to give indolizidine 11 in 93% yield. The indolizidine 11 protected with acid sensitive groups was refluxed with Dowex $50 \mathrm{~W}-\mathrm{X} 8$ in $90 \% \mathrm{MeOH}$ for 5 h and filtered. The filterate was washed with MeOH , and then eluted with 3 $\mathrm{N} \mathrm{NH}_{3}$ solution to afford enantiomerically pure 1,6-diepicastanospermine $2(91 \%$ yield) without further purification.

Figure 4. NOE experiments with I.6-diepicastanospermine 2.
The relatative stereochemistry of the target molecule $\mathbf{2}$ was determined from 2D NOESY experiments. Strong NOE cross peak were observed $\mathrm{H} 6 / \mathrm{H} 7$, and $\mathrm{Hl} / \mathrm{H} 8$, but not $\mathrm{HI} / \mathrm{H} 8$ a in compound 2. The spectral and physical properties of 1,6diepicastanospermine 2 matched those reported in the literature $\left\{[\alpha]_{D}^{20}-73.8\left(c \cdot 0.60, \mathrm{H}_{2} \mathrm{O}\right) ;\right.$ lit., $\left.{ }^{11}[\alpha]_{D}^{20}-72.0(c \cdot 0.72, \mathrm{MeOH})\right\}$.

Experimental Section

General. All non-aqueous reaction was carried out under an inert nitrogen atmosphere. THF was distilled from $\mathrm{Na} /$ benzophenone: 2,2-dimethoxypropane, DMF, and methylene chloride were distilled from CaH_{2}. Column chromatography was carried out using 230-400 mesh silica gel. Final solution before evaporation was washed with brine and dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Melting points are uncorrected. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR experiments were conducted on Brucker AW500 spectrometer. HREIMS were obtained on a JEOLJMS-700 mass spectrometer. Optical rotations were measured on a JASCO DIP-1000 polarimeter and $[\alpha]_{\mathrm{D}}$ values are given in units of 10^{-1} deg $\mathrm{cm}^{-} \mathrm{g}^{-1}$
Methyl 2,6-imino-3,4-O-isopropylidene-D-mannonate (3). This was prepared as described. ${ }^{5 d}[\alpha]_{D}^{21)}-13.7$ (c 0.90 . CHCl_{3}): $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right.$) 1.43 (s. 3 H). 1.46 (s. 3 H). $2.73(\mathrm{dd} . J=14.7 .2 .4 \mathrm{~Hz} .1 \mathrm{H}) .3 .20(\mathrm{dd} . J=14.7 .2 .4 \mathrm{~Hz}$. $1 \mathrm{H}) .3 .43-3.49(\mathrm{~m} .2 \mathrm{H}) .3 .73(\mathrm{~m} .1 \mathrm{H}) .3 .80(\mathrm{~s} .3 \mathrm{H})$ and 4.25 $(\mathrm{m}, 1 \mathrm{H}), \delta \mathrm{C}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 26.6,26.8$. 49.1. 52.5. 61.2. 67.5. 72.6. 80.7. 109.4, and 171.2 (Found: C. 51.93: H. 7.43: $\mathrm{N} .6 .05 \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires C. 51.94 : H. 7.41 : N. 6.06%).
Methyl 2,6-imino-3,4-O-isopropylidene- N-(9-phenyl-fluoren-9-yl)-D-mannonate (4). To a solution of piperidine 3 (2.07 g .9 .0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $9-$ phenylfluoren-9-yl bromide (3.51 g .10 .9 mmol) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)=$ ($4.49 \mathrm{~g}, 13.6 \mathrm{mmol}$), and triethylamine $(2.53 \mathrm{~mL}, ~ 18.2$ mmol) were added. The mixture was stirred for 48 h at room temperature, and then it was filtered and concentrated. The residue was chromatographed on silica gel [hexane- EtOAc (6:1)] to give $4(3.61 \mathrm{~g} .85 \%)$ as a solid. $\mathrm{mp} 68-69{ }^{\circ} \mathrm{C}$: $[\alpha]_{\mathrm{D}}^{210}-276.3\left(c 2.00 . \mathrm{CHCl}_{3}\right): \delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 1.38(\mathrm{~s}$. $3 \mathrm{H}) .1 .44(\mathrm{~s} .3 \mathrm{H}) .3 .03(\mathrm{~s} .3 \mathrm{H}) .3 .46(\mathrm{dd} . J=13.6 .6 .4 \mathrm{~Hz}$. $1 \mathrm{H}) .3 .61(\mathrm{~m} .2 \mathrm{H}) .3 .95$ (dd. $J=9.9 .5 .0 \mathrm{~Hz} .1 \mathrm{H}) .4 .17$ (dd. J $=9.9 .8 .7 \mathrm{~Hz} .1 \mathrm{H}) .4 .44(\mathrm{~m}, 1 \mathrm{H})$ and $7.20-7.66(\mathrm{~m} .13 \mathrm{H}): \delta$ ($125 \mathrm{MHz}: \mathrm{CDCl}_{3}$) $26.7,27.2,50.6,51.2,61.7 .63 .5,74.2$. 76.8. 77.0. 77.1. 113.0. 119.9, 120.1. 125.6. 126.3. 126.9. 127.5. 127.6. 127.9. 128.5, 128.6, 139.8. 140.8. 144.3. 145.8. 146.5. and 172.3 (Found: C. 73.88: H. 6.20: N. 2.96 $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{NO}_{s}$ requires C. 73.87: H. 6.20: N. 2.97\%).

Methyl 5-O-t-butyldimethylsilyl-2,6-imino-3,4-O-isoprop-ylidene- N-(9-phenylfluoren-9-yl)-D-ma-nnonate (5). To a solution of $4(3.88 \mathrm{~g} .8 .2 \mathrm{mmol})$ was dissolved in DMF (40 mL) were added imidazole (1.12 g .16 .5 mmol) and TBDMSCl (1.49 g .9 .9 mmol) at room temperature. After stirring of the mixture for 12 h . saturated aqueous $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc (50 $\mathrm{mL} \times \mathbf{5}$). After concentration of combined extracts. the residue was chromatographed on silica gel [hexane-EtOAc (8:1)] to give compound $5(4.63 \mathrm{~g} .96 \%)$ as a solid. $\mathrm{mp} 69-70^{\circ} \mathrm{C}$: $[\alpha]_{\mathrm{D}}^{30}-15.2\left(c 2.00 . \mathrm{CHCl}_{3}\right): \delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{\mathrm{s}}\right)-0.03(\mathrm{~s}$. $3 \mathrm{H}) .0 .00(\mathrm{~s} .3 \mathrm{H}) .0 .85(\mathrm{~s} .9 \mathrm{H}) .1 .30(\mathrm{~s} .3 \mathrm{H}), 1.33(\mathrm{~s} .3 \mathrm{H}), 3.02$ (s. 3 H). 3.17 (dd. $J=13.3 .6 .4 \mathrm{~Hz} .1 \mathrm{H}) .3 .30(\mathrm{dd} . J=13.4$. $5.4 \mathrm{~Hz}, 1 \mathrm{H}) .3 .42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .3 .69(\mathrm{dd}, J=9.8 .4 .3$ $\mathrm{Hz} .1 \mathrm{H}) .4 .20(\mathrm{dd} . J=9.7 .8 .7 \mathrm{~Hz} .1 \mathrm{H}) .4 .28(\mathrm{~m} .1 \mathrm{H})$. and 7.16-7.57 (m, 13H): δ © (125 MHz: $\left.\mathrm{CDCl}_{5}\right)$-4.4. 12.7. 16.7 . $16.8,21.2,24.1,24.2,24.4,25.3,25.8,28.2,29.5,30.5,49.8$. 51.2.61.4. 63.7.72.5. 76.0. 76.8. 110.5. 118.3. 118.5. 124.3. 125.1. 125.9. 125.9. 126.0. 126.4. 126.9. 127.0. 138.3. 139.4. 142.4. 144.2. 145.6, and 170.7 (Found: C. 71.77: H. 7.41 : N $2.37 \mathrm{C}_{3} \mathrm{H}_{43} \mathrm{NO}_{5} \mathrm{Si}$ requires C. 71.76 : H. 7.40 : N. 2.39%).
5-O-t-Butyldimethylsilyl-2,6-imino-3,4-O-isopropylideneN -(9-phenylfluoren-9-yl)-D-mannose (6). To a solution of ester $5(4.63 \mathrm{~g} .7 .9 \mathrm{mmol})$ in toluene (50 mL) was added DIBAL-H (1 M in toluene. 9.49 mL .9 .5 mmol) at $-78{ }^{\circ} \mathrm{C}$
and then stirred for 5 min at same temperature. The reaction mixture was added $10 \% \mathrm{NaOH}(5 \mathrm{~mL}$), and the solution was allowed to reach room temperature. and then filtered. The filtrate was evaporated. and the residue was chromatographed on silica gel [hexane-EtOAc (10:1)] to give compound 6 ($2.51 \mathrm{~g} .84 \%$. based on 68% conversion) as a solid and starting material $5(1.48 \mathrm{~g})$ as an oil: $[\alpha]_{\mathrm{D}}^{20}-19.9\left(c 1.00 . \mathrm{CHCl}_{3}\right)$: δ_{H} ($500 \mathrm{MHz}: \mathrm{CDCl}_{3}$) -0.03 (s. 3H). 0.00 (s. 3 H). 0.93 (s. 9 H). 1.18 (s. 3H). 1.24 (s. 3 H). 2.43 (d. $J=12.2 \mathrm{~Hz} .1 \mathrm{H}$). 2.76 (dd. $J=15.2 .9 .3 \mathrm{~Hz}, 1 \mathrm{H}) .3 .19$ (m. 2H). 4.04 (bs. 1 H). 4.11 (t. $J=9.3 \mathrm{~Hz} .1 \mathrm{H}) .7 .10-7.62(\mathrm{~m} .13 \mathrm{H})$. and $8.62(\mathrm{~d} . J=5.9$ $\mathrm{HZ}, 1 \mathrm{H}): \delta_{\mathrm{c}}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 0.0,18.4,25.9 .26 .7 .26 .9$. $53.7,66.2 .70 .1,71.3,77.8,79.8,111.2,120.1,120.1 .120 .6$. 124.8. 125.4, 126.7. 127.3, 127.9. 128.1, 128.2. 128.5. 128.8. 129.1. 129.8. 141.0. 141.1. 142.7. 145.1. 145.7. 176.6. and 192.0 (Found: C. 73.47 : H. 7.44 : N. $2.54 \mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}$ requires C. $73.48: \mathrm{H} .7 .44: \mathrm{N} .2 .52 \%$).

2-(1'-Hydroxy-2'-propylenyl)-5-O-t-butyldimethylsilyl-3,4-O-isopropylidene-3,4,5-trihydroxy- N-(9-phenylfluor-en-9-yl) piperidine (7a). To a solution of aldehyde 6 (2.74 g. 4.9 mmol$)$ in dry THF (25 mL) at $-78^{\circ} \mathrm{C}$ was dropwised vinylmagnesium bromide (1 M in THF. 7.39 mL .7 .4 mmol) and stirred for 30 min at same temperature. and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The reaction mixture was extracted with EtOAc (50 mL). The organic phase was separated and the aqueous phase was extracted with $\mathrm{EtOAc}(40 \mathrm{~mL} \times 3)$. After concentration of combined extracts. the resulting residue was chromatographed on silica gel [hexane-EtOAc (8:1)] to give 7a $(2.26 \mathrm{~g} .79 \%)$ as a solid. mp $129-131^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{-01}-336.0\left(c 3.00 . \mathrm{CHCl}_{3}\right): \delta_{\mathrm{H}}(500$ $\mathrm{MHz}: \mathrm{CDCl}_{3}$) -0.03 (s. 3 H). 0.00 (s. 3 H). 0.81 (s. 9 H). 1.30 (s. 3 H). 1.39 (s. 3 H). 3.07 (dd. $J=8.0 .2 .2 \mathrm{~Hz} .1 \mathrm{H}$). 3.44 (dd. $J=13.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.56(\mathrm{~m} .2 \mathrm{H}), 4.01(\mathrm{dd} . J=10.0$. $5.0 \mathrm{~Hz} .1 \mathrm{H}) .4 .30-4.37(\mathrm{~m} .2 \mathrm{H}) .4 .56(\mathrm{~m}, 1 \mathrm{H}) .4 .75(\mathrm{~m} .1 \mathrm{H})$. $5.45(\mathrm{~m}, 1 \mathrm{H})$. and $7.12-7.68(\mathrm{~m}, 13 \mathrm{H}): \delta\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right)$ $-4.5,-4.0,18.7 .26 .3,27.3 .28 .1,54.2,64.0 .65 .2 .70 .5,75.3$. 77.2, 78.6. 111.7. 114.9. 120.7, 121.1, 126.0, 126.4. 126.7. 127.8. 128.3. 128.4. 128.7. 128.9. 129.3. 137.7. 139.3. 141.3.146.1. 147.4. and 149.8 (Found: C. $74.06:$ H. 7.75 : N. $2.41 \mathrm{C}_{36} \mathrm{H}_{4} \mathrm{NO}_{4} \mathrm{Si}$ requires C. $74.06: \mathrm{H} .7 .77$: N. 2.40%).

2-(1'-O-t-Butyldimethylsilyl-1'-hydroxy-2'-propylenyl)-5-O-t-butyldimethylsilyl-3,4-O-isopropyli-dene-3,4,5-tri-hydroxy- N-(9-phenylfluoren-9-yl) piperidine (8). To a solution of $7 \mathrm{a}(2.59 \mathrm{~g} .4 .4 \mathrm{mmol})$ in dry DMF (23 mL) was added imidazole (0.75 g .11 .1 nmol) and TBDMSCl (0.80 g. 5.3 mmol) at room temperature. After stirred for 10 h . saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc ($20 \mathrm{~mL} \times 5$). After concentration of the combined extracts. the residue was chromatographed on silica gel [hexane-EtOAc (10:1)] to give $8(3.03 \mathrm{~g} .98 \%)$ as a solid. mp $62-63{ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{2(1)}-57.0\left(c 2.50, \mathrm{CHCl}_{3}\right): \delta_{\mathrm{H}}$ $\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right)-0.30(\mathrm{~s} .3 \mathrm{H}),-0.23$ (s. 3 H), $0.00(2 \mathrm{~s}$. $9 \mathrm{H}) .0 .83(2 \mathrm{~s} .15 \mathrm{H}) .1 .32(\mathrm{~s} .3 \mathrm{H}) .1 .37(\mathrm{~s} .3 \mathrm{H}) .3 .00(\mathrm{~d} . J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}) .3 .48$ (dd. $J=13.4 .6 .2 \mathrm{~Hz} .1 \mathrm{H}) .3 .57(\mathrm{dd} . J=$ $13.3 .8 .5 \mathrm{~Hz}, 1 \mathrm{H}) .3 .74(\mathrm{~d} . J=9.1 \mathrm{~Hz}, 1 \mathrm{H}) .3 .80(\mathrm{dd} . J=$ $10.2 .5 .0 \mathrm{~Hz} .1 \mathrm{H}) .4 .09(\mathrm{dd} . J=17.2 .1 .4 \mathrm{~Hz} .1 \mathrm{H}), 4.35(\mathrm{~m}$. 1 H). 4.57 (dd. $J=10.1 .1 .9 \mathrm{~Hz} .1 \mathrm{H}) .4 .66(\mathrm{dd} . J=10.2 .8 .0$
$\mathrm{Hz} .1 \mathrm{H}), 5.52(\mathrm{~m}, 1 \mathrm{H})$, and $7.12-7.70(\mathrm{~m} .13 \mathrm{H}): \delta_{0}(125$ $\left.\mathrm{MHz}: \mathrm{CDCl}_{\mathfrak{j}}\right) 18.1,18.3,25.7,25.8,25.9,26.2,26.9,27.7$. $53.5,65.0 .65 .2,69.9 .77 .8,77.9,111.0,114.5 .120 .0 .120 .0$. 126.3. 126.9. 127.2. 127.8. 128.1, 128.3. 128.4. 139.5. 140.2. 140.6. 146.0. 147.5 and 149.8 (Found: C. 72.25 : H. 8.53: N $2.01 \mathrm{C}_{4} \mathrm{H}_{59} \mathrm{NO}_{4} \mathrm{Si}_{2}$ requires C. 72.26 : H. 8.52: N. 2.01%).
2-(1'-O- t-Butyldimethylsilyl-1',3'-dihydroxypropyl)-5O - t-butyldimethylsilyl-3,4- O-isopropylidene-3,4,5-tri-hydroxy- N-(9-phenylfluoren-9-yl) piperidine (9). To a stirred solution of $8(1.60 \mathrm{~g} .2 .3 \mathrm{mmol})$ in dry THF (15 mL) was added $\mathrm{BH}_{5}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}(3.2 \mathrm{~mL} .6 .9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring of the mixture for 10 h at room temperature. the reaction mixture was quenched by sequential addition of water (2.0 $\mathrm{mL}) .3 \mathrm{M} \mathrm{NaOH}(2.5 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(4.5 \mathrm{~mL})$. The mixture was extracted with EtOAc ($15 \mathrm{~mL} \times 3$) and combined extracts was concentrated. The residue was chromatographed on silica gel [hexane-EtOAc (6:1)] to give 9 as an oil $(1.22 \mathrm{~g}$. 75%). $[\alpha]_{\mathrm{D}}^{\text {(1) }}-33.4\left(c 2.00 . \mathrm{CHCl}_{3}\right): \delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right)-$ $0.11(\mathrm{~s} .3 \mathrm{H}),-0.03(\mathrm{~s} .3 \mathrm{H}) .-0.01$ (s. 3H) $.0 .02(\mathrm{~s} .3 \mathrm{H}), 0.85(\mathrm{~s}$. $9 \mathrm{H}) .0 .88$ (s. 9H). 1.32 (s. 3H). 1.33 (s. 3H). 1.48 (m. 1 H). $1.59(\mathrm{~m}, 2 \mathrm{H}) .2 .66(\mathrm{~m}, 1 \mathrm{H}) .2 .87(\mathrm{~m}, 1 \mathrm{H}) .3 .18(\mathrm{~d} . J=8.0 \mathrm{~Hz}$. $1 \mathrm{H}) .3 .39(\mathrm{dd} . J=13.9 .6 .1 \mathrm{~Hz} .1 \mathrm{H}) .3 .53(\mathrm{dd} . J=10.3 .4 .3$ $\mathrm{Hz} .1 \mathrm{H}) .3 .61(\mathrm{~m} .1 \mathrm{H}) .4 .36(\mathrm{~m} .1 \mathrm{H}) .4 .53(\mathrm{dd} . J=10.3 .8 .1$ $\mathrm{Hz}, 1 \mathrm{H})$, and $7.22-7.68(\mathrm{~m}, 13 \mathrm{H}): \delta_{-}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.5$. -4.1. -3.8. $-3.5,0.39 .18 .6,18.7 .26 .2$. 26.6. 27.3. 27.8. 38.9. $54.1,58.9,62.2,65.9,70.2,739,77.9,78.1,111.4,120.5$. 120.6. 126.6. 127.3. 127.7. 128.0. 128.2. 128.7. 128.9. 128.9. 140.2. 140.7. 145.7. 148.2 and 150.1 (Found: C. 70.44: H. 8.57 : $\mathrm{N} .1 .98 \mathrm{C}_{42} \mathrm{H}_{61} \mathrm{NO}_{2} \mathrm{Si}_{2}$ requires C. 70.44 : H. 8.59 : N. 1.96%).
2-($1^{\prime}-O-t$-Butyldimethylsilyl-3'-O-methanesulfonyl-1',3'-dihydroxy-propyl)-5-O-t-butyldimethylsilyl-3,4-O-iso-propylidene-3,4,5-trihydroxy- N -(9-phenylfluoren-9-yl) piperidine (10). To a solution of alcohol 9 (1.22 g. 1.7 mmol) in dry THF (10 mL) at $0^{\circ} \mathrm{C}$ was added triethylamine $(0.47 \mathrm{~mL} .3 .4 \mathrm{mmol})$ and $\mathrm{MsCl}(0.19 \mathrm{~mL} .2 .6 \mathrm{mmol})$. The reaction mixture was stirred for 30 min . and then was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). After concentration of combined extracts. the residue was chromatographed on silica gel [hexane-EtOAc (8:1)] to give $10(1.33 \mathrm{~g}, ~ 98 \%) .[\alpha]_{\mathrm{D}}^{210}$ -67.3 (c $2.00 . \mathrm{CHCl}_{\mathrm{j}}$): $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right)-0.10(\mathrm{~s} .3 \mathrm{H})$. $-0.02(\mathrm{~s} .3 \mathrm{H}), 0.00(\mathrm{~s} .6 \mathrm{H}) .0 .83$ (s. 9 H) .0 .87 (s. 9 H). 1.28 (s. $6 \mathrm{H}) .1 .39(\mathrm{~m} .1 \mathrm{H}) .1 .55(\mathrm{~m}, 1 \mathrm{H}) .1 .70(\mathrm{~m}, 1 \mathrm{H}) .2 .84(\mathrm{~s} .3 \mathrm{H}) .3 .03$ (m. 1H) . $3.32(\mathrm{dd} . J=14.0 .6 .0 \mathrm{~Hz}, 1 \mathrm{H}) .3 .45(\mathrm{~m} .2 \mathrm{H}) .3 .51$ (m. 1 H). $3.59(\mathrm{~m}, 1 \mathrm{H}) .4 .33(\mathrm{~m}, 1 \mathrm{H}) .4 .47(\mathrm{dd}, J=10.2 .8 .1 \mathrm{~Hz}$ $1 \mathrm{H})$. and $7.19-7.72(\mathrm{~m}, 13 \mathrm{H}): \delta \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$-4.9. -4.5. -4.1. -4.1. 18.2. 18.3. 25.8. 26.1. 26.9. 27.5, 29.7.35.0. 37.1. 53.8. 62.4. 65.4, 66.6. 69.4. 71.9. 77.5, 77.6. 110.9. 120.2. 120.5. 126.1. 126.6. 126.8. 127.3, 127.9. 128.4. 128.7. 139.8. 140.3. 144.9. 147.7. and 149.5 (Found: C. 65.05 : H. 8.01 : N $1.77 \mathrm{C}_{43} \mathrm{H}_{65} \mathrm{NO}_{7} \mathrm{SSi}_{2}$ requires C. 65.03 : H. 8.00 : N. 1.76%)
1,6-Di-O-t-butyldimethylsilyl-7,8-O-isopropylidene-1,6diepicastanospermine (11). A mixture of mesy late 10 (1.33 g. 1.7 mmol) $\mathrm{NaOAc}(0.68 \mathrm{~g} .8 .4 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}$ $(0.05 \mathrm{~g})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was hydrogenated at atmospheric pressure for 10 h at $60^{\circ} \mathrm{C}$. The cataly'st was filtered off, the
filterate was refluxed for 1 h . the MeOH was evaporated and water was added. The mixture was extracted with EtOAc (10 $\mathrm{mL} \times 3$). and the combined organic phase was concentrated. The residue was chromatographed on silica gel [hexaneEtOAc (3:1)] to give 11 as a solid ($0.71 \mathrm{~g} .93 \%$) mp $58-59$ ${ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{-10}-36.5\left(c 2.00 . \mathrm{CHCl}_{3}\right): \delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{CDCl}_{3}\right) 0.00$ (s. 12 H). 0.80 (s. 18 H). 1.29 (s. 3H). 1.30 (s. 3 H). 1.59 (m. $1 \mathrm{H}) .2 .16(\mathrm{~m} .1 \mathrm{H}) .2 .47(\mathrm{dd} . J=9.7 .3 .9 \mathrm{~Hz}, 1 \mathrm{H}) .2 .52(\mathrm{~d} . J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}$) , $2.71(\mathrm{~m}, 1 \mathrm{H}) .2 .88$ (dd. $J=13.4 .2 .2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.02 (m. 1H). 3.17 (dd. $J=9.2 .2 .4 \mathrm{~Hz} .1 \mathrm{H}$). 3.57 (dd. $J=$ 18.9.9.5 Hz. 1H). $4.14(\mathrm{dd} . J=4.2 .2 .0 \mathrm{~Hz}, 1 \mathrm{H})$, and 4.23 $(\mathrm{m}, 1 \mathrm{H}): \delta \mathrm{C}\left(125 \mathrm{MHz}: \mathrm{CDCl}_{3}\right)-4.6,-4.6,-4.5,-4.2$. 18.7 . $18.7,26.2 .26 .3,27.0 .27 .5,35.5 .51 .9,55.6 .69 .1 .72 .3 .72 .4$, 75.5. 82.1. and 109.8 (Found: C. 60.34: H. 10.37: N. 3.05 $\mathrm{C}_{23} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{Si}_{2}$ requires C. 60.34 : H. $10.35: \mathrm{N}, 3.06 \%$).

1,6-Diepicastanospermine (2). A solution of $11(0.71 \mathrm{~g}$. 1.6 mmol) and Dowex $50 \mathrm{~W}-\mathrm{X} 8(100 \mathrm{mg})$ in MeOH was refluxed for 12 h . The mixture was filtered. and then was washed with MeOH . The remaining residue was eluted with 3 $\mathrm{N} \mathrm{NH}_{4} \mathrm{OH}$. The solution evaporated. then co-evaporated with toluene to give 2 as an oil ($0.26 \mathrm{~g}, 91 \%$). $[\alpha]_{\mathrm{D}}^{20}-73.8(c 0.60$. $\left.\mathrm{H}_{2} \mathrm{O}\right): \delta_{\mathrm{H}}\left(500 \mathrm{MHz}: \mathrm{D}_{2} \mathrm{O}\right) 1.61(\mathrm{~m} .1 \mathrm{H}), 1.96(\mathrm{dd}, J=9.3 .6 .7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.27(\mathrm{~m} .1 \mathrm{H}) .2 .40(\mathrm{~d} . J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) .2 .45(\mathrm{dd} . J=$ 18.4.9.2 Hz. 1H). $2.89(\mathrm{t} . J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) .3 .02(\mathrm{dd} . J=12.6$. $2.5 \mathrm{~Hz}, 1 \mathrm{H}) .3 .49(\mathrm{dd}, J=9.5 .3 .6 \mathrm{~Hz} .1 \mathrm{H}) .3 .64(\mathrm{t} . J=9.5 \mathrm{~Hz}$. $1 \mathrm{H}), 3.99(\mathrm{~m} .1 \mathrm{H})$. and $4.23(\mathrm{~m} .1 \mathrm{H}): \delta\left(125 \mathrm{MHz}: \mathrm{D}_{2} \mathrm{O}\right) 32.7$. $51.5 .55 .5,69.2,72.0,73.8,74.4$, and 75.6 (Found: C. 50.77 : H. 7.98: N. $7.40 \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C. 50.78 : H. 7.99: N. 7.40%).

Acknowledgement. This work was supported by Korea Research Foundation Grant (KRF-2001-041-F00294).

References

1. (a) Nicolaou. K. C.: Clareman. D. A.: Barnette. W. E. J. AM. Chen. Soc. 1980. 102. 6611. (b) Paquette. L. A.: Mitzel. T. M. J. An. Chent Soc. 1996. 118. 1931.
2. (a) Ina, H.; Kibayashi, C. Tetrohedron Lett. 1991, 32.4147 . (b) Kilonda, A.; Compernolle. F.; Hoomaert, G. J. J. Org. Chem. 1995. 60 , 5820 . (c) Pearson. W. H.: Hembre. E. J. J. Org. Chem 1996.61.5537.
3. (a) Ocain. T. D.: Rich. D. H. J. Med. Chem. 1988. 31. 2193 (b) Ha. H.-T.: Ann. Y. G.: Lee. G. S. Tetrahedron: Aswnervy 1999. 10. 2327. (c) Norman, B. H.: Morris. M. H. Tetrahedron Lett 1992. 33.6803.
4. (a) Chang, K. T.: Chang. K. C.; Park, H. Y; Kim, Y. K.; Park. K. H.; Lee. W. S. Hetenocycles 2001, $55(6), 1173$. (b) Krohn. K.: Broser. E.: Heins. H. Carbolydrate Res 1987. 16t. 59.
5. (a) Lee. B. W.: Teong. I. Y.: Yang. M. S.: Choi. S. U.: Park. K. H. Smhesis 2000. 9. 1305. (b) Kim. J. H.: Yang. M. S.: Lee. W. S.: Park, K. H. J. Chen. Soc., Perkin Trans. 1 1998. 17, 2877. (c) Lee. J. H.: Kang. J. E.: Yang. M. S.; Kang, K. Y.: Park, K. H. Tetrahedron 2001. 57, 10071. (d) Park, K. H.; Yoon. Y. J.: Lee. S. G. J. Chem. Soc. Perkin Trons. 11994. 18. 2621
6. Hohernschutz. L. D.: Bell. E. A.: Jewess. P. T.: Leworthy. D. P.: Pryce. R. T.: Arrold. E.: Clardy. T. Phrochemistry 1981. 20.811.
7. Nash. R. J.; Fellows, L. E.; Dring. J. V.: Stirton, C. H.: Carter, D:Hegarty. M. P. Bell. E. A. Phytochemistry 1988, 27, 1403.
8. Leubell, W. D.: Rapopport. H. J. Am. Chem. Soc. 1987. 109, 236.
9. Gerspacher. P.: Rapopport. H. I. Org. Chem. 1991.56. 3700.
10. (a) Reetz. M. T. Angew: Chem. Int. Ed. Engl. 1984. 23. 556. (b) Veeresha. V:: Datta. A. Tetrahedron Left. 1997. 29. 5223.
11. Fleet, G. W. J.; Ramsden. N. G.; Molyneux. R. J.; Jacob. G. S. Tetralhedron Lett. 1988, 29. 3603.

[^0]: *Corresponding author: Fax: +82-55-757-0178; E-mail: khpark àgshp gsnu ac.kr

