DOI QR코드

DOI QR Code

Theoretical Studies of the Gas-Phase Identity Nucleophilic Substitution Reactions of Cyclopentadienyl Halides

  • Published : 2003.05.20

Abstract

The gas phase identity nucleophilic substitution reactions of halide anions (X = F, Cl, Br) with cyclopentadienyl halides (1) are investigated at the B3LYP/6-311+G**, MP2/6-311+G** and G2(+)MP2 levels involving five reaction pathways: σ-attack $S_N2$, β-$S_N$2'-syn, β-$S_N$2'-anti, γ-$S_N$2'-syn and γ-$S_N$2'-anti paths. In addition, the halide exchange reactions at the saturated analogue, cyclopentyl halides (2), and the monohapto circumambulatory halide rearrangements in 1 are also studied at the same three levels of theory. In the σ-attack $S_N2$ transition state for 1 weak positive charge develops in the ring with X = F while negative charge develops with X = Cl and Br leading to a higher energy barrier with X = F but to lower energy barriers with X = Cl and Br than for the corresponding reactions of 2. The π-attack β-$S_N$2' transition states are stabilized by the strong $n_C-{\pi}^{*}_{C=C}$ charge transfer interactions, whereas the π-attack γ-$S_N$2' transition states are stabilized by the strong $n_C-{\sigma}^{*}_{C-X}$ interactions. For all types of reaction paths, the energy barriers are lower with X = F than Cl and Br due to the greater bond energy gain in the partial C-X bond formation with X = F. The β-$S_N$2' paths are favored over the γ-$S_N$2' paths only with X = F and the reverse holds with X = Cl and Br. The σ-attack $S_N2$ reaction provides the lowest energy barrier with X = Cl and Br, but that with X = F is the highest energy barrier path. Activation energies for the circumambulatory rearrangement processes are much higher (by more than 18 kcal $mol^{-1}$) than those for the corresponding $S_N2$ reaction path. Overall the gas-phase halide exchanges are predicted to proceed by the σ-attack $S_N2$ path with X = Cl and Br but by the β-$S_N$2'-anti path with X = F. The barriers to the gas-phase halide exchanges increase in the order X = F < Br < Cl, which is the same as that found for the gas-phase identity methyl transfer reactions.

Keywords

References

  1. Breslow, R.; Canary, J. W. J. Am. Chem. Soc. 1991, 113, 3950. https://doi.org/10.1021/ja00010a041
  2. Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity; Wiley: New York, 1994.
  3. Breslow, R. Acc. Chem. Res. 1973, 6, 395.
  4. Reindl, B.; Schleyer, P. v. R. J. Comput. Chem. 1998, 19, 1402. https://doi.org/10.1002/(SICI)1096-987X(199809)19:12<1402::AID-JCC7>3.0.CO;2-M
  5. Glukhovtsev, M. N.; Bach, R. D.; Laiter, S. J. Phys. Chem. 1996, 100, 10952. https://doi.org/10.1021/jp961134v
  6. Lee, E. P. F.; Wright, T. G. Phys. Chem. Chem. Phys. 1999, 1, 219. https://doi.org/10.1039/a808035f
  7. Childs, R. F. Tetrahedron 1982, 38, 567. https://doi.org/10.1016/0040-4020(82)80199-3
  8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.〵ⴰ㌭〰㈰〵ⴰ㘭〰㈰〵ⴰ㤭〰㈰〶ⴰ〭〰㈰〶ⴰㄭ㈰㈰〶ⴰ㘭㌰㈰〶ⴱㄭ㈲㈰〷ⴰ〭〰㈰〷ⴰ㐭〰㈰〷ⴱ〭〰㈰〸ⴰ〭〰㈰〹ⴰ〭〰㈰㘶ⴰ〭〰〰ⴰ ㈰㘶ⴰ〭〰〰ⴰ ㈰㘶ⴰ〭〰줋돀ᢰ?⨀⁊렼࣬?⨀ꄋ돐⣬?⨀ᣔ?⨀មᘘ䡇⣔?⨀Ԁ඘ᘘ᠘䡇䣔?⨀਀Ԁ᎘阙骜䡇棔?⨀਀؀↘ᚙ骜䡇裔?⨀਀܀ₘ᚛骜䡇꣔?⨀਀ࠀᒘᘘ鮜䡇죔?⨀਀ऀ᎘ᘙ鮜䡇?⨀਀਀ኘ阚鮜䡇ࣕ?⨀਀଀ኘ阛鮜䡇⣕?⨀਀ఀ题ᘜ鮜䡇䣕?⨀਀ഀ⊘ᚘ鮜䡇棕?⨀਀฀↘隘鮜䡇裕?⨀਀ༀ↘ᚙ鮜䡇꣕?⨀਀က↘隙鮜䡇죕?⨀਀ᄀₘᚚ鮜䡇?⨀਀ሀₘ隚鮜䡇ࣖ?⨀਀ጀᾘ᚛鮜䡇⣖?⨀਀᐀ₘ際鮜䡇䣖?⨀਀ᔀᾘ᚜鮜䡇棖?⨀਀ᜀᾘ障鮜䡇裖?⨀਀ᤀ᎘ᘘ鲜䡇꣖?⨀਀ᬀ᎘阘鲜䡇죖?⨀਀ᰀኘᘙ鲜䡇?⨀਀ἀ᎘阙鲜䡇ࣗ?⨀਀℀ኘᘚ鲜䡇⣗?⨀਀─ኘ阚鲜䡇䣗?⨀਀⤀ᆘᘛ鲜䡇棗?⨀਀Ⰰᆘᘛ鲜䡇裗?⨀਀ⴀኘ阛鲜䡇꣗?⨀਀㄀ᆘᘜ鲜䡇죗?⨀਀㔀题ᘜ鲜䡇?⨀਀㘀ᆘ阜鲜䡇ࣘ?⨀਀㤀ᆘ阜鲜䡇⣘?⨀਀㨀㈰ㄶ鲜䡇䣘?⨀਀㼀ᾘᚘ鲜䡇棘?⨀਀䀀ₘ隘鲜䡇裘?⨀਀䘀ᾘᚙ鲜䡇꣘?⨀਀䴀鄉돀
  9. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. https://doi.org/10.1021/jp960976r
  10. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  11. Glendening, E. D.; Badenhoop, J. K.; Weinhold, F. J. Comput. Chem. 1998, 19, 593. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<593::AID-JCC3>3.0.CO;2-M
  12. Glendening, E. D.; Badenhoop, J. K.; Weinhold, F. J. Comput. Chem. 1998, 19, 628. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<628::AID-JCC5>3.0.CO;2-T
  13. Houk, K. N.; Gustafson, S. M.; Black, K. J. Am. Chem. Soc. 1992, 114, 8565. https://doi.org/10.1021/ja00048a032
  14. Lee, I.; Kim, C. K.; Lee, B.-S. J. Comput. Chem. 1995, 16, 1045. https://doi.org/10.1002/jcc.540160811
  15. Lee, J. K.; Kim, C. K.; Lee, I. J. Phys. Chem. A 1997, 101, 2893. https://doi.org/10.1021/jp9632697
  16. Kim, C. K.; Li, H. G.; Lee, B.-S.; Kim, C. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 1953. https://doi.org/10.1021/jo0164047
  17. Epiotis, N. D.; Cherry, W. R.; Shaik, S.; Yates, R.; Bernardi, F. Structural Theory of Organic Chemistry; Springer-Verlag: Berlin, 1977; p 158.
  18. Epiotis, N. D.; Cherry, W. R.; Shaik, S.; Yates, R.; Bernardi, F.Structural Theory of Organic Chemistry; Springer-Verlag: Berlin,1977; p 158. Part IV
  19. Klumpp, G. W. Reactivity in Organic Chemistry; Wiley: New York, 1982; p 38.
  20. Mitchell, D. J.; Schlegel, H. B.; Shaik, S. S.; Wolfe, S. Can. J. Chem. 1985, 63, 1642. https://doi.org/10.1139/v85-276
  21. Carballeira, L.; Perez-Juste, I. J. Phys. Chem. A 2000, 104, 9362. https://doi.org/10.1021/jp001937p
  22. Raghavachari, K.; Whiteside, R. A.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 5649. https://doi.org/10.1021/ja00409a004
  23. Li, H. G.; Kim, C. K.; Lee, B.-S.; Kim, C. K.; Rhee, S. K.; Lee, I.J. Am. Chem. Soc. 2001, 123, 2326. https://doi.org/10.1021/ja0033584
  24. Petersson, G. A.; Malik, D. K.; Wilson, W. G.; Ochterski, J. W.; Montgomery, J. A. Jr.; Frisch, M. J. J. Chem. Phys. 1998, 109, 10570. https://doi.org/10.1063/1.477794
  25. Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. Jr. J. Chem. Phys. 1996, 104, 2598. https://doi.org/10.1063/1.470985
  26. Schlegel, H. B. In Ab Initio Methods in Quantum Chemistry.Part I; Lawley, K. P., Ed.; Wiley: Chichester, 1987; p 249.
  27. Li, H. G.; Kim, C. K.; Lee, B.-S.; Kim, C. K.; Rhee, S. K.; Lee, I. J. Am. Chem. Soc. 2001, 123, 2326. https://doi.org/10.1021/ja0033584
  28. Sublett, B.; Bowman, N. S. J. Org. Chem. 1961, 26, 2594. https://doi.org/10.1021/jo01351a641
  29. Roth, W. Tetrahedron Lett. 1964, 1009.
  30. Bernardi, F.; Robb, M. A. In Ab Initio Methods in Quantum Chemistry. Part I; Lawley, K. P., Ed.; Wiley: Chichester, 1987; p 155.
  31. McLean, S.; Findlay, D. M. Can. J. Chem. 1970, 48, 3107. https://doi.org/10.1139/v70-524
  32. McWeeny, R. Coulsonís Valence, 3rd ed.; Oxford Univ. Press:Oxford, 1979; p 163.
  33. Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1995, 117, 2024. https://doi.org/10.1021/ja00112a016
  34. Lee, I.; Kim, C. K.; Sohn, C. K.; Li, H. G.; Lee, H. W. J. Phys. Chem. A 2002, 106, 1081. https://doi.org/10.1021/jp013690h