DOI QR코드

DOI QR Code

Theoretical Study on the Nonadiabatic Transitions in the Photodissociation of Cl2, Br2, and I2

  • Asano, Yukako (Department of Chemistry, Faculty of Science and Technology, Keio University) ;
  • Yabushita, Satoshi (Department of Chemistry, Faculty of Science and Technology, Keio University)
  • Published : 2003.06.20

Abstract

We have theoretically studied the nonadiabatic transitions among the five lower states with the Ω=$1_u$ symmetry ($1_u^{(1)} to 1_u^{(5)}$) in the photodissociation of Cl₂, Br₂, and I₂by using the spin-orbit configuration interaction (SOCI) method and the semiclassical time-dependent coupled Schrodinger equations. From the configuration analyses of the SOCI wavefunctions, we found that the nonadiabatic transition between $1_u^{(2)}$ and $1_u^{(1)}$ is a noncrossing type, while that between $1_u^{(3)}$ and $1_u^{(4)}$ is a crossing type for all the molecules. The behavior of the radial derivative coupling element between $1_u^{(1)}$ and $1_u^{(2)}$ and that between $1_u^{(3)}$ and $1_u^{(4)}$ is analyzed in detail. In Cl₂, nonadiabatic transitions can take place even between the states correlating to different dissociation limits, while in Br₂ and I₂, with the usual photon energies e.g. less than 20 eV, nonadiabatic transitions occur only between the states correlating to the same dissociation limits, reflecting the different magnitudes of the spin-orbit interactions.

Keywords

References

  1. Bracker, A. S.; Wouters, E. R.; Suits, A. G.; Vasyutinskii, O. S. J.Chem. Phys. 1999, 110, 6749. https://doi.org/10.1063/1.478668
  2. Alexander, A. J.; Kim, Z. H.; Kandel, S. A.; Zare, R. N.; Rakitzis,T. P.; Asano, Y.; Yabushita, S. J. Chem. Phys. 2000, 113, 9022. https://doi.org/10.1063/1.1319995
  3. Rakitzis, T. P.; Kitsopoulos, T. N. J. Chem. Phys. 2002, 116, 9228. https://doi.org/10.1063/1.1473801
  4. Bass, M. J.; Brouard, M.; Clark, A. P.; Vallance, C.; Martinez-Haya, B. Phys. Chem. Chem. Phys. 2003, 5, 856. https://doi.org/10.1039/b210092d
  5. Asano, Y.; Yabushita, S. J. Phys. Chem. A 2001, 105, 9873. https://doi.org/10.1021/jp0120561
  6. Asano, Y.; Yabushita, S. Chem. Phys. Lett. 2003, 372, 348. https://doi.org/10.1016/S0009-2614(03)00432-9
  7. Li, J.; Balasubramanian, K. J. Mol. Spectrosc. 1989, 138, 162. https://doi.org/10.1016/0022-2852(89)90108-2
  8. Teichteil, C.; Pelissier, M. Chem. Phys. 1994, 180, 1. https://doi.org/10.1016/0301-0104(93)E0395-C
  9. de Jong, W. A.; Visscher, L.; Nieuwpoort, W. C. J. Chem. Phys.1997, 107, 9046. https://doi.org/10.1063/1.475194
  10. LaJohn, L. A.; Christiansen, P. A.; Ross, R. B.; Atashroo, T.;Ermler, W. C. J. Chem. Phys. 1987, 87, 2812. https://doi.org/10.1063/1.453069
  11. Yabushita, S.; Morokuma, K. Chem. Phys. Lett. 1990, 175, 518. https://doi.org/10.1016/0009-2614(90)85574-V
  12. Amatatsu, Y.; Morokuma, K.; Yabushita, S. J. Chem. Phys. 1991,94, 4858. https://doi.org/10.1063/1.460571
  13. Shepard, R.; Shavitt, I.; Pitzer, R. M.; Comeau, D. C.; Pepper, M.;Lischka, H.; Szalay, P. G.; Ahlrichs, R.; Brown, F. B.; Zhao, J.-G.Int. J. Quantum. Chem. Symp. 1988, 22, 149. https://doi.org/10.1002/qua.560220114
  14. Morokuma, K.; Yamashita, K.; Yabushita, S. Potential EnergySurfaces of Several Elementary Chemical Reactions. In SupercomputerAlgorithms for Reactivity, Dynamics and Kinetics of SmallMolecules; Laganà, A., Ed.; Kluwer: Dordrecht, The Netherlands,1989; p 37.
  15. Yabushita, S.; Zhang, Z.; Pitzer, R. M. J. Phys. Chem. A 1999,103, 5791. https://doi.org/10.1021/jp9901242
  16. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; VanNostrand Reinhold: New York, 1979.
  17. Coxon, J. A. In Low-lying Electronic States of Diatomic HalogenMolecules; Barrow, R. F.; Long, D. A.; Millen, D. J., Eds.; MolecularSpectroscopy Vol. 1; The Chemical Society: London, 1973; p 177. https://doi.org/10.1039/9781847556684-00177
  18. Galloy, C.; Lorquet, J. C. J. Chem. Phys. 1977, 67, 4672. https://doi.org/10.1063/1.434633
  19. Nikitin, E. E.; Umanskii, S. Theory of Slow Atomic Collisions;Springer-Verlag: New York, 1984.
  20. Singer, S. J.; Freed, K. F.; Band, Y. B. Adv. Chem. Phys. 1985, 61, 1. https://doi.org/10.1002/9780470142851.ch1
  21. Lefebvre-Brion, H.; Field, R. W. Perturbations in the Spectra ofDiatomic Molecules; Academic: New York, 1986.
  22. Pacios, L. F.; Christiansen, P. A. J. Chem. Phys. 1985, 82, 2664. https://doi.org/10.1063/1.448263
  23. Hurley, M. M.; Pacios, L. F.; Christiansen, P. A.; Ross, R. B;Ermler, W. C. J. Chem. Phys. 1986, 84, 6840. https://doi.org/10.1063/1.450689
  24. Nikitin, E. E.; Zülicke, L. Selected Topics of the Theory ofChemical Elementary Processes; Lecture Notes in Chemistry 8;Springer-Verlag: Berlin, 1978.
  25. Singer, S. J.; Freed, K. F.; Band, Y. B. J. Chem. Phys. 1983, 79,6060. https://doi.org/10.1063/1.445788

Cited by

  1. Effects of long-range potentials on polarization of chlorine atoms from photodissociation of ICl vol.103, pp.13, 2005, https://doi.org/10.1080/00268970500074985
  2. Fully relativistic calculations on the potential energy surfaces of the lowest 23 states of molecular chlorine vol.128, pp.4, 2008, https://doi.org/10.1063/1.2827457
  3. ) vol.118, pp.31, 2014, https://doi.org/10.1021/jp4114283
  4. Relativistic state-specific multireference perturbation theory incorporating improved virtual orbitals: Application to the ground state single-bond dissociation vol.36, pp.26, 2015, https://doi.org/10.1002/jcc.24037
  5. An ab initio study of ion-pair states of the Br2 molecule vol.120, pp.2, 2016, https://doi.org/10.1134/S0030400X16020181
  6. Theoretical study of ultrafast x-ray photoelectron diffraction from molecules undergoing photodissociation vol.148, pp.12, 2018, https://doi.org/10.1063/1.5019878
  7. Atomic polarization in the photodissociation of diatomic molecules vol.8, pp.48, 2006, https://doi.org/10.1039/b612590e
  8. Rotational State Distributions of I2(B) from Vibrational Predissociation of I2(B)-Ne vol.25, pp.9, 2003, https://doi.org/10.5012/bkcs.2004.25.9.1397
  9. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  10. A simplified account of the correlation effects to bond breaking processes: The Brillouin-Wigner perturbation theory using a multireference formulation vol.151, pp.6, 2003, https://doi.org/10.1063/1.5097657