References
- Hotchandani, S.; Kamat, P. V. J. Electrochem. Soc. 1992, 139,1630. https://doi.org/10.1149/1.2069468
- Rensmo, H.; Keis, K.; Lindstrom, H.; Soedergren, S.; Solbrand,A.; Hagfeldt, A.; Lindquist, S.-E.; Wang, L. N.; Muhammed, M. J.Phys. Chem. 1997, B 101, 2598.
- Bedja, I.; Kamat, P. V. J. Phys. Chem. 1995, 99, 9182. https://doi.org/10.1021/j100022a035
- Bjorksten, U.; Moser, J.; Gratzel, M. Chem. Mater. 1994, 6, 858. https://doi.org/10.1021/cm00042a026
- Litter, M. I.; Navio, J. A. J. Photochem. Photobiol. A: Chem.1994, 84, 183. https://doi.org/10.1016/1010-6030(94)03858-9
- Bickley, R. I.; Gonzalez-Carreno, T.; Gonzalez-Elipe, A. R.;Munuera, G.; Palmisano, L. J. Chem. Soc. Faraday Trans. 1994,90, 2257. https://doi.org/10.1039/ft9949002257
- Murata, Y.; Fukuta, S.; Ishikawa, S.; Yokoyama, S. Sol. EnergyMater. Sol. Cells 2000, 62, 157. https://doi.org/10.1016/S0927-0248(99)00148-8
- Wang, Y.; Cheng, H.; Hao, Y.; Ma, J.; Li, W.; Cai, S. J. Mater. Sci.1999, 34, 3721. https://doi.org/10.1023/A:1004611724069
- Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.;Salbeck, J.; Spreitzer, H.; Gratzel, M. Nature 1998, 395, 583. https://doi.org/10.1038/26936
- Nozik, A. J.; Memming, R. J. Phys. Chem. 1996, 100, 13061. https://doi.org/10.1021/jp953720e
- Grela, M. A.; Brusa, M. A.; Colussi, A. J. J. Phys. Chem. 1997, B101, 10986.
- Kirk-Othmer Encyclopedia of Chemical Technology; Howe-Grant,M., Ed.; John Wiley & Sons, Inc.: 1997; Vol. 24, p 225.
- Palmisano, L.; Augugliaro, V.; Sclafani, A.; Schiavello, M. J.Phys. Chem. 1988, 92, 6710. https://doi.org/10.1021/j100334a044
- Choi, W.; Termin, A.; Hoffermann, M. R. J. Phys. Chem. 1994,98, 13669. https://doi.org/10.1021/j100102a038
- Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J. Y. J. Phys. Chem.1998, B 102, 10871.
- Wang, C.-C.; Zhang, Z.; Ying, J. Y. Nano Structured Mater. 1997,9, 583. https://doi.org/10.1016/S0965-9773(97)00130-X
- Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Chem. Mater. 1995, 7, 663. https://doi.org/10.1021/cm00052a010
- Wang, Y.; Hao, Y.; Cheng, H.; Ma, J.; Xu, B.; Li, W.; Cai, S. J.Mater. Sci. 1999, 34, 2773. https://doi.org/10.1023/A:1004658629133
- Akhtar, M. K.; Xiong, Y.; Pratsinis, S. E. AIChE J. 1991, 37, 1561. https://doi.org/10.1002/aic.690371013
- Ding, Z.; Hu, X.; Lu, G. Q.; Yue, P.-L.; Greenfield, P. F. Langmuir2000, 16, 6216. https://doi.org/10.1021/la000119l
- Okuyama, K.; Kousaka, Y.; Tohge, N.; Yamamoto, S.; Wu, J. J.;Flagan, R. C.; Seinfeld, J. H. AIChE J. 1986, 32, 2010. https://doi.org/10.1002/aic.690321211
- Okuyama, K.; Jeung, J.-T.; Kousaka, Y. Chem. Eng. Sci. 1989, 44,1369. https://doi.org/10.1016/0009-2509(89)85010-9
- Okuyama, K.; Ushio, R.; Kousaka, Y.; Flagan, R. C.; Seinfeld, J.H. AIChE J. 1990, 36, 409. https://doi.org/10.1002/aic.690360310
- Ismat Shah, S.; Li, W. unpublished.
- Freeware form http://www.ccp14.ac.uk/tutorial/xfit-95/.
- Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley:Menlo Park, CA, 1978.
- Sclafani, A.; Palmisano, L.; Davi, E. J. Photochem. Photobiol. A:Chem. 1991, 56, 113. https://doi.org/10.1016/1010-6030(91)80011-6
- Vidal, A.; Herrero, J.; Romero, M.; Sanchez, B.; Sanchez, M. J.Photochem. Photobiol. A: Chem. 1994, 79, 213. https://doi.org/10.1016/1010-6030(93)03763-7
- Handbook of X-ray Photoelectron Spectroscopy; Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E., Eds.; Perkin-Elmer corporation: 1979.
- Sen, S. K.; Riga, J.; Verbist, J. Chem. Phys. Lett. 1976, 39, 560. https://doi.org/10.1016/0009-2614(76)80329-6
- Sarma, D. D.; Rao, C. N. R. J. Electron Spectrosc. Relate. Phenom.1980, 20, 25. https://doi.org/10.1016/0368-2048(80)85003-1
- Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. J. Nanoparticle Res.1999, 1, 439. https://doi.org/10.1023/A:1010044830871
- Shannon, R. D. Acta Crystallogr. 1976, A 32, 751.
- Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. 1969, B 25, 925.
-
Jung, O. J.; Kim, I. K.; Saha, I. S. (Structure and size distribution of Nd(III) doped
$TiO_2$ nanoparticle) Material Science and Engineering B, in press. - Fotou, G. P.; Pratsinis, S. E. Chem. Eng. Comm. 1996, 151, 251. https://doi.org/10.1080/00986449608936551
- Jung, O. J. Bull. Korean Chem. Soc. 2001, 22, 1188.
Cited by
- Lanthanide modified semiconductor photocatalysts vol.2, pp.4, 2012, https://doi.org/10.1039/c2cy00552b
- Synthesis of Carbon Nanotubes from Catalytic Decomposition of C2H2 through Pd/Al2O3 Catalysts vol.24, pp.12, 2003, https://doi.org/10.5012/bkcs.2003.24.12.1771
- Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD vol.25, pp.11, 2003, https://doi.org/10.5012/bkcs.2004.25.11.1661
- Photodecomposition of Concentrated Ammonia over Nanometer-sized TiO2, V-TiO2, and Pt/V-TiO2 Photocatalysts vol.28, pp.4, 2003, https://doi.org/10.5012/bkcs.2007.28.4.581
- Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity vol.270, pp.1, 2003, https://doi.org/10.1016/j.molcata.2007.01.031
- Photocatalytic degradation of persistent organic pollutants under visible irradiation by TiO2 catalysts sensitized with Zn(II) and Co(II) tetracarboxy-phthalocyanines vol.20, pp.8, 2016, https://doi.org/10.1142/s108842461650084x
- Controlled tethering of Ag nanoparticles to alter photocatalytic performance of TiO2 vol.6, pp.11, 2003, https://doi.org/10.1088/2053-1591/ab46dc