DOI QR코드

DOI QR Code

Structural Dynamics of Myoglobin Probed by Femtosecond Infrared Spectroscopy of the Amide Band

  • Kim, Seong-Heun (Department of Chemistry and Chemistry Institute for Funtional Materials, Pusan National University) ;
  • Jin, Geun-Young (Department of Chemistry and Chemistry Institute for Funtional Materials, Pusan National University) ;
  • Lim, Man-Ho (Department of Chemistry and Chemistry Institute for Funtional Materials, Pusan National University)
  • Published : 2003.10.20

Abstract

The dynamics of the tertiary conformation of myoglobin (Mb) after photolysis of carbon monoxide was investigated at 283 K solution by probing amide I and II bands using femtosecond IR absorption spectroscopy. Time-resolved spectra in the amide region evolve with 6-12 ps time scale without noticeable subpicosecond dynamics. The spectra measured at 100 ps delay after photolysis is similar to the difference FTIR spectrum at equilibrium. Time-resolved spectra of photoexcited Mb evolve modestly and their amplitudes are less than 8% of those of photolyzed MbCO, indicating that thermal contribution to the spectral evolution in the amide region is negligible. These observations suggest that the conformational relaxation ensuing photolysis of MbCO be complex and the final deoxy protein conformation have been substantially formed by 100 ps, probably with 6- 12 ps time constant.

Keywords

References

  1. Springer, B. A.; Sligar, S. G.; Olson, J. S.; Phillips, G. N., Jr.Chem. Rev. 1994, 94, 699. https://doi.org/10.1021/cr00027a007
  2. Kuriyan, J.; Wilz, S.; Karplus, M.; Petsko, G. A. J. Mol. Biol.1986, 192, 133. https://doi.org/10.1016/0022-2836(86)90470-5
  3. Phillips, S. E. V. J. Mol. Biol. 1980, 142, 531. https://doi.org/10.1016/0022-2836(80)90262-4
  4. Takano, T. J. Mol. Biol. 1977, 110, 569. https://doi.org/10.1016/S0022-2836(77)80112-5
  5. Perutz, M. F.; Fermi, G.; Luisi, B.; Shaanan, B.; Liddington, R. C.Acc. Chem. Res. 1987, 20, 309. https://doi.org/10.1021/ar00141a001
  6. Petrich, J. W.; Lambry, J. C.; Kuczera, K.; Karplus, M.; Poyart, C.;Martin, J. L. Biochemistry 1991, 30, 3975. https://doi.org/10.1021/bi00230a025
  7. Gibson, Q. H.; Olson, J. S.; McKinnie, R. E.; Rohlfs, R. J. J. Biol.Chem. 1986, 261, 10228.
  8. Henry, E. R.; Sommer, J. H.; Hofrichter, J.; Eaton, W. A. J. Mol.Biol. 1983, 166, 443. https://doi.org/10.1016/S0022-2836(83)80094-1
  9. Lim, M.; Jackson, T. A.; Anfinrud, P. A. Proc. Natl. Acad. Sci. U.S. A. 1993, 90, 5801. https://doi.org/10.1073/pnas.90.12.5801
  10. Xie, X.; Simon, J. D. Biochemistry 1991, 30, 3682. https://doi.org/10.1021/bi00229a013
  11. Anfinrud, P. A.; Han, C.; Hochstrasser, R. M. Proc. Natl. Acad.Sci. U. S. A. 1989, 86, 8387. https://doi.org/10.1073/pnas.86.21.8387
  12. Lim, M.; Jackson, T. A.; Anfinrud, P. A. Nature Struct. Biol. 1997,4, 209. https://doi.org/10.1038/nsb0397-209
  13. Findsen, E. W.; Friedman, J. M.; Ondrias, M. R.; Friedman, J. W.Science 1985, 229, 661. https://doi.org/10.1126/science.4023704
  14. Deak, J.; Chiu, H.; Lewis, C. M.; Miller, R. J. D. J. Phys. Chem. B1998, 102, 6621. https://doi.org/10.1021/jp980492q
  15. Genberg, L.; Richard, L.; McLendon, G.; Miller, R. J. D. Science1991, 251, 1051. https://doi.org/10.1126/science.1998121
  16. Brunori, M.; Vallone, B.; Cutruzzola, F.; Travaglini-Allocatelli,C.; Berendzen, J.; Chu, K.; Sweet, R. M.; Schlichting, I. Proc.Natl. Acad. Sci. U. S. A. 2000, 97, 2058. https://doi.org/10.1073/pnas.040459697
  17. Chu, K.; Vojtchovsky, J.; McMahon, B. H.; Sweet, R. M.;Berendzen, J.; Schlichting, I. Nature 2000, 403, 921. https://doi.org/10.1038/35002641
  18. Schott, F.; Lim, M.; Jackson, T. A.; Smirnov, A.; Soman, J.;Olson, J. S.; George, N.; Phillips, J.; Wulff, M.; Anfinrud, P. A.Science 2003, 300, 1944. https://doi.org/10.1126/science.1078797
  19. Dong, A.; Huang, P.; Caughey, W. S. Biochemistry 1990, 29,3303. https://doi.org/10.1021/bi00465a022
  20. Dong, A.; Huang, P.; Caughey, W. S. Biochemistry 1992, 31, 182. https://doi.org/10.1021/bi00116a027
  21. Dousseau, F.; Pezolet, M. Biochemistry 1990, 29, 8771. https://doi.org/10.1021/bi00489a038
  22. Hamm, P.; Lim, L.; Hochstrasser, R. M. J. Phys. Chem. B 1998,102, 6123. https://doi.org/10.1021/jp9813286
  23. Hamm, P.; Kaindl, R. A.; Stenger, J. Opt. Lett. 2000, 25, 1798. https://doi.org/10.1364/OL.25.001798
  24. Causgrove, T. P.; Dyer, R. B. J. Phys. Chem. 1996, 100, 3273. https://doi.org/10.1021/jp952483c
  25. Causgrove, T. P.; Dyer, R. B. Biochemistry 1993, 32, 11985. https://doi.org/10.1021/bi00096a007
  26. Lim, M.; Wolford, M. F.; Hamm, P.; Hochstrasser, R. M. Chem.Phys. Lett. 1998, 290, 355. https://doi.org/10.1016/S0009-2614(98)00533-8
  27. Lim, M. Bull. Korean Chem. Soc. 2002, 23, 865. https://doi.org/10.5012/bkcs.2002.23.6.865
  28. Hamm, P. Chem. Phys. 1995, 200, 415. https://doi.org/10.1016/0301-0104(95)00262-6
  29. Wynne, K.; Hochstrasser, R. M. Chem. Phys. 1995, 193, 211. https://doi.org/10.1016/0301-0104(95)00012-D
  30. Lim, M.; Jackson, T. A.; Anfinrud, P. A. Science 1995, 269, 962. https://doi.org/10.1126/science.7638619
  31. Rudolph, S. A.; Boyle, S. O.; Dresden, C. F.; Gill, S. J. Biochemistry1972, 11, 1098. https://doi.org/10.1021/bi00756a024
  32. Srajer, V.; Champion, P. M. Biochemistry 1991, 30, 7390. https://doi.org/10.1021/bi00244a005
  33. Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Phys. Chem. 1996,100, 12043. https://doi.org/10.1021/jp9536458
  34. Jackson, T. A.; Lim, M.; Anfinrud, P. A. Chem. Phys. 1994, 180,131. https://doi.org/10.1016/0301-0104(93)E0414-Q
  35. Kuczera, K.; Lambry, J. C.; Martin, J. L.; Karplus, M. Proc. Natl.Acad. Sci. U. S. A. 1993, 90, 5805. https://doi.org/10.1073/pnas.90.12.5805
  36. Frauenfelder, H.; Parak, F.; Young, R. D. Annu. Rev. Biophys.Biophys. Chem. 1988, 17, 451. https://doi.org/10.1146/annurev.bb.17.060188.002315

Cited by

  1. Protein Conformation-Controlled Rebinding Barrier of NO and Its Binding Trajectories in Myoglobin and Hemoglobin at Room Temperature vol.116, pp.20, 2012, https://doi.org/10.1021/jp300176q
  2. Dynamics of Geminate Rebinding of NO with Cytochrome c in Aqueous Solution Using Femtosecond Vibrational Spectroscopy vol.116, pp.46, 2012, https://doi.org/10.1021/jp308468j
  3. Photoexcitation Dynamics of NO-Bound Ferric Myoglobin Investigated by Femtosecond Vibrational Spectroscopy vol.117, pp.10, 2013, https://doi.org/10.1021/jp400055d
  4. vol.117, pp.40, 2013, https://doi.org/10.1021/jp407733g
  5. Geminate rebinding dynamics of nitric oxide to ferric hemoglobin in D2O solution vol.12, pp.6, 2013, https://doi.org/10.1039/c3pp50014d
  6. Photoexcitation dynamics of nitric oxide bound ferric myoglobin probed by femtosecond IR spectroscopy vol.41, pp.2100-014X, 2013, https://doi.org/10.1051/epjconf/20134107007
  7. Picosecond Dynamics of Photoexcited DNO-Bound Myoglobin Probed by Femtosecond Vibrational Spectroscopy vol.119, pp.5, 2015, https://doi.org/10.1021/jp509644m
  8. ps-TRIR covers all the bases – recent advances in the use of transient IR for the detection of short-lived species in nucleic acids vol.134, pp.7, 2009, https://doi.org/10.1039/b902108f
  9. Exploring Fine Structures of Photoactive Yellow Protein in Solution Using Wide-Angle X-ray Scattering vol.25, pp.11, 2003, https://doi.org/10.5012/bkcs.2004.25.11.1676
  10. Conformational Dynamics of Heme Pocket in Myoglobin and Hemoglobin vol.26, pp.1, 2003, https://doi.org/10.5012/bkcs.2005.26.1.151
  11. Photoexcitation Dynamics of S-Nitrosoglutathione Probed by Femtosecond Mid-IR Spectroscopy vol.26, pp.6, 2003, https://doi.org/10.5012/bkcs.2005.26.6.995
  12. Potential Energy Surface and Molecular Dynamics of MbNO: Existence of an Unsuspected FeON Minimum vol.109, pp.44, 2003, https://doi.org/10.1021/jp0523975
  13. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450