Abstract
By the use of multi-loop thermodynamic boxes developed here by us, we show that models of enzyme catalysis (e.g., split-site model) developed in an attempt to emphasize the importance of the reactant-state destabilization and, thus, demonstrate misleading nature of the fundamentalist position which defines Pauling's transition-state stabilization as the entire and sole source of enzyme catalytic power, should be reduced to the fundamentalist formulation which completely neglects dynamical aspects of mechanism between the reactant and the transition states and dwells only on events restricted to the reactant and transition states alone, because the splitsite (and other canonical) formulations as well as fundamentalist formulations are based, in common, on equilibrium assumptions stipulated by the thermodynamic box logics. We propose to define the equilibrium assumptions as the requisite and sufficient conditions for the fundamentalist position to enjoy its primacy as central dogma, but not as sufficient conditions for its validity, because it is subjected to contradictions presented by existing data.