DOI QR코드

DOI QR Code

Noncovalently Linked Zinc Porphyrin-Ru(bpy)3 Dyad Assembled via Axial Coordination

  • Kim, Dol (Department of Chemistry, Sunchon National University) ;
  • Shin, Eun-Ju (Department of Chemistry, Sunchon National University)
  • Published : 2003.10.20

Abstract

Noncovalently linked electron donor-acceptor dyad consisting of zinc tetratolylporphyrin and pyridine appended ruthenium trisbipyridine comlex was prepared, via axial coordination of pyridine moiety in ruthenium trisbipyridine complex on zinc tetratolylporphyrin. For the purpose of comparison, axial coordination of pyridine-appended 2,2'-bipyridine on zinc tetratolylporphyrin was also investigated. The Kvalues were detemined based on absorption of fluorescence studies. The fluorescence of zinc teratolylporphrin was efficiently quenched upon axial coordination of pyridine moiety, prbably due to the photoinduced electron transfer from zinc tetrtolylporphyrin to ruthenium trisbipyridine, supported by free enegy estimation.

Keywords

References

  1. Wasielewski, M. R. Chem. Rev. 1992, 92, 435. https://doi.org/10.1021/cr00011a005
  2. Gust, D.; Moore, T. A. Acc. Chem. Res. 1993, 26, 198. https://doi.org/10.1021/ar00028a010
  3. Harriman, A.; Sauvage, J.-P. Chem. Soc. Rev. 1996, 25, 41. https://doi.org/10.1039/cs9962500041
  4. Hayashi, T.; Ogoshi, H. Chem. Soc. Rev. 1997, 26, 355. https://doi.org/10.1039/cs9972600355
  5. Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S.;Coudret, C.; Balzani, V.; Barigelletti, F.; de Cola, L.; Flamigni, L.Chem. Rev. 1994, 94, 993. https://doi.org/10.1021/cr00028a006
  6. Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S.Chem. Rev. 1996, 96, 759. https://doi.org/10.1021/cr941154y
  7. Meyer, T. J. Acc. Chem. Res. 1989, 22, 163. https://doi.org/10.1021/ar00161a001
  8. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.;von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85. https://doi.org/10.1016/0010-8545(88)80032-8
  9. Kalyanasundaram, K. Photochemistry of Polypyridine andPorphyrin Complexes; Academic Press: London, 1992.
  10. Harriman, A.; Hissler, M.; Trompete, O.; Ziessel, R. J. Am. Chem.Soc. 1999, 121, 2516. https://doi.org/10.1021/ja982300a
  11. Flamigni, L.; Barigelletti, F.; Armaroli, N.; Ventura, B.; Collin, J.-P.; Sauvage, J.-P.; Williams, J. A. G. Inorg. Chem. 1999, 38, 661. https://doi.org/10.1021/ic980847k
  12. Flamigni, L.; Armaroli, N.; Barigelletti, F.; Balzani, V.; Collin, J.-P.; Dalbavie, J.-O.; Heitz, V.; Sauvage, J.-P. J. Phys. Chem. B1997, 101, 5936. https://doi.org/10.1021/jp963773b
  13. Harriman, A.; Odobel, F.; Sauvage, J.-P. J. Am. Chem. Soc. 1995,117, 9461. https://doi.org/10.1021/ja00142a012
  14. Collin, J.-P.; Harriman, A.; Heitz, V.; Odobel, F.; Sauvage, J.-P. J.Am. Chem. Soc. 1994, 116, 5679. https://doi.org/10.1021/ja00092a020
  15. Harriman, A.; Odobel, F.; Sauvage, J.-P. J. Am. Chem. Soc. 1994,116, 5481. https://doi.org/10.1021/ja00091a067
  16. Steiger, B.; Anson, F. C. Inorg. Chem. 1995, 34, 3355. https://doi.org/10.1021/ic00116a031
  17. LeGourriérec, D.; Andersson, M.; Davidsson, J.; Mukhtar, E.;Sun, L.; Hammarström, L. J. Phys. Chem. A 1999, 103, 557. https://doi.org/10.1021/jp984150w
  18. Shin, E. J.; Kim, I. S.; Ahn, S. Y. Bull. Korean Chem. Soc. 2000,21, 328.
  19. Larsen, R. W.; Jasuja, R.; Niu, S.-L.; Dwivedi, K. J. Photochem.Photobiol. A:Chem. 1997, 107, 71. https://doi.org/10.1016/S1010-6030(96)04589-3
  20. Sessler, J. L.; Brown, C. T.; OConnor, D.; Springs, S. L.; Wang,R.; Sathiosatham, M.; Hirose, T. J. Org. Chem. 1998, 63, 7370. https://doi.org/10.1021/jo9810112
  21. Hunter, C. A.; Sarson, L. D. Angew. Chem. Int. Ed. Engl. 1994,33, 2313. https://doi.org/10.1002/anie.199423131
  22. Ward, M. W. Chem. Soc. Rev. 1997, 26, 365. https://doi.org/10.1039/cs9972600365
  23. Sessler, J. L.; Wang, B.; Springs, S. L.; Brown, C. T. ComprehensiveSupramolecular Chemistry; Pergamon: London, 1996.
  24. Lehn, J.-M. Science 2002, 295, 2400. https://doi.org/10.1126/science.1071063
  25. Kercher, M.; Konig, M. B.; Zieg, H.; de Cola, L. J. Am. Chem.Soc. 2002, 124, 11541. https://doi.org/10.1021/ja026695g
  26. Ciana, L. D.; Hamachi, I.; Meyer, T. J. J. Org. Chem. 1989, 54,1731. https://doi.org/10.1021/jo00268a042
  27. Peek, B. M.; Ross, G. T.; Edwards, S. W.; Meyer, G. J.; Meyer, T.J.; Erickson, B. W. Int. J. Peptide Protein Res. 1991, 38, 114.
  28. Strouse, F.; Schoonover, J. R.; Duesing, R.; Boyde Jr., S.; Jones,W. E.; Meyer, T. J. Inorg. Chem. 1995, 34, 473. https://doi.org/10.1021/ic00106a009
  29. Benesi, A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703. https://doi.org/10.1021/ja01176a030
  30. Shin, E. J.; Kim, D. J. Photochem. Photobiol. A : Chemistry 2002,152, 25. https://doi.org/10.1016/S1010-6030(02)00189-2
  31. Lee, J.-C.; Kim, T.-Y.; Kang, S. H.; Shim, Y. K. Bull. KoreanChem. Soc. 2001, 22, 257.
  32. Kim, J.; Rhee, S. W.; Na, Y. H.; Lee, K. P.; Do, Y.; Jeoung, S. C.Bull. Korean Chem. Soc. 2001, 22, 1316.
  33. Ha, J.-H.; Jung, G. Y.; Kim, M.-S.; Lee, Y. H.; Shin, K.; Kim, Y.-R. Bull. Korean Chem. Soc. 2001, 22, 63.

Cited by

  1. Combining Very Large Quadratic and Cubic Nonlinear Optical Responses in Extended, Tris-Chelate Metallochromophores with Six π-Conjugated Pyridinium Substituents vol.132, pp.10, 2010, https://doi.org/10.1021/ja910538s
  2. (Flame of the Forest): A Promising New Natural Sensitizer Belonging to Chalcone Class vol.3, pp.7, 2011, https://doi.org/10.1021/am200341y
  3. Preparation of PVC-LMO Beads Using Dimethyl Sulfoxide Solvent and Adsorption Characteristics of Lithium Ions vol.20, pp.2, 2014, https://doi.org/10.7464/ksct.2014.20.2.154
  4. Photoluminescence electron transfer quenching of ruthenium(II)-polypyridyl complexes with biologically important phenolate ions in aqueous acetonitrile solution vol.12, pp.4, 2015, https://doi.org/10.1007/s13738-014-0528-1
  5. Exploring the self-assembly and energy transfer of dynamic supramolecular iridium-porphyrin systems vol.45, pp.43, 2016, https://doi.org/10.1039/C6DT02619B
  6. Photoinduced electron transfer in supramolecular ruthenium–porphyrin assemblies vol.46, pp.7, 2017, https://doi.org/10.1039/C6DT04414J
  7. Tetrakis(ethyl-4(4-butyryl)oxyphenyl)porphyrinato zinc complexes with 4,4′-bpyridin: synthesis, characterization, and its catalytic degradation of Calmagite vol.8, pp.36, 2018, https://doi.org/10.1039/C8RA01134F
  8. Intramolecular Energy Transfer in a Bichromophoric System, Zinc meso-Tetratolylporphyrin Covalently Linked to Anthracene through Ethylene Linkage vol.27, pp.5, 2003, https://doi.org/10.5012/bkcs.2006.27.5.751
  9. Synthesis, spectroscopic, cyclic voltammetry properties and molecular structure of the thiocyanato-N meso-tetratolylporphyrinato zinc(II) ion complex vol.1133, pp.None, 2003, https://doi.org/10.1016/j.molstruc.2016.11.080
  10. Zinc(II) triazole meso-arylsubstituted porphyrins for UV-visible chloride and bromide detection. Adsorption and catalytic degradation of malachite green dye vol.10, pp.38, 2003, https://doi.org/10.1039/d0ra03070h
  11. Synthesis, photophysical, cyclic voltammetry properties, and molecular structure study of novel (5,10,15,20-tetratolylphenyl porphyrinato)zinc(II) with pyrazine vol.33, pp.3, 2003, https://doi.org/10.1016/j.jksus.2021.101364