DOI QR코드

DOI QR Code

Recent Advances in Multireference-Based Perturbation Theory

  • Nakano, Haruyuki (Department of Applied Chemistry, School of Engineering, The University of Tokyo) ;
  • Hirao, Kimihiko (Department of Applied Chemistry, School of Engineering, The University of Tokyo)
  • Published : 2003.06.20

Abstract

Accurate ab initio computational chemistry has evolved dramatically. In particular, the development of multireference-based approaches has opened up a completely new area, and has had a profound impact on the potential of theoretical chemistry. Multireference-based perturbation theory (MRPT) is an extension of the closed-shell single reference Møller-Plesset method, and has been successfully applied to many chemical and spectroscopic problems. MRPT has established itself as an efficient technique for treating nondynamical and dynamical correlations. Usually, a complete active space self-consistent field (CASSCF) wave function is chosen as a reference function of MRPT. However, CASSCF often generates too many configurations, and the size of the active space can outgrow the capacity of the present technology. Many attempts have been proposed to reduce the dimension of CASSCF and to widen the range of applications of MRPT. This review focuses on our recent development in MRPT.

Keywords

References

  1. Hirao, K. Chem. Phys. Lett. 1992, 190, 374. https://doi.org/10.1016/0009-2614(92)85354-D
  2. Hirao, K. Chem. Phys. Lett. 1992, 196, 397. https://doi.org/10.1016/0009-2614(92)85710-R
  3. Hirao, K. Intern. J. Quantum Chem. 1992, S26, 517.
  4. Hirao, K. Chem. Phys. Lett. 1993, 201, 59. https://doi.org/10.1016/0009-2614(93)85034-L
  5. Nakano, H. J. Chem. Phys. 1993, 99, 7983. https://doi.org/10.1063/1.465674
  6. Nakano, H. Chem. Phys. Lett. 1993, 207, 372. https://doi.org/10.1016/0009-2614(93)89016-B
  7. Siegbahn, P. E.; Heiberg, A.; Roos, B. O.; Levy, B. PhysicaScripta 1980, 21, 323. https://doi.org/10.1088/0031-8949/21/3-4/014
  8. Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. Chem. Phys. 1980, 48,157. https://doi.org/10.1016/0301-0104(80)80045-0
  9. Roos, B. O. Intern. J. Quantum Chem. 1980, S14, 175.
  10. Nakano, H.; Hirao, K. Chem. Phys. Lett. 2000, 317, 90. https://doi.org/10.1016/S0009-2614(99)01364-0
  11. Nakano, H.; Nakatani, J.; Hirao, K. J. Chem. Phys. 2001, 114,1133. https://doi.org/10.1063/1.1332992
  12. Nakano, H.; Uchiyama, R.; Hirao, K. J. Comput. Chem. 2002, 23,1166. https://doi.org/10.1002/jcc.10050
  13. Nakano, H.; Shirai, S.; Hirao, K. J. Chem. Phys., submitted forpublication.
  14. Finley, J. P.; Hirao, K. Chem. Phys. Lett. 2000, 328, 60. https://doi.org/10.1016/S0009-2614(00)00920-9
  15. Nakao, Y.; Hirao, K. J. Chem. Phys., submitted for publication.

Cited by

  1. Multireference density functional theory with orbital-dependent correlation corrections vol.106, pp.15, 2006, https://doi.org/10.1002/qua.21164
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. The photophysics of isolated protein chromophores vol.51, pp.1, 2003, https://doi.org/10.1140/epjd/e2008-00144-9
  4. Choice of Optimal Shift Parameter for the Intruder State Removal Techniques in Multireference Perturbation Theory vol.8, pp.11, 2012, https://doi.org/10.1021/ct2006924