DOI QR코드

DOI QR Code

A Model Study toward the Synthesis of Xestoquinone

Xestoquinone의 합성에 대한 모델연구

  • Ahn Chan Mug (Department of Basic Science, Institute of Basic Medical Science, Yonsei University Wonju College of Medicine) ;
  • Ho Bum Woo (Department of Basic Science, Institute of Basic Medical Science, Yonsei University Wonju College of Medicine)
  • 안찬묵 (연세대학교 원주의과대학 기초과학교실) ;
  • 우호범 (연세대학교 원주의과대학 기초과학교실)
  • Published : 2003.08.20

Abstract

A strategy for synthesis of the furan-fused tetracyclic system of xestoquinone was explored through a model study. Using 3-butyn-1-ol as a starting material, 5-iodo-1-methoxymethoxy pentyne (5) was prepared in 5 steps. Reaction of ethyl 2-phenylpropanoate with 5 gave ethyl 7-methoxymethoxy-2-methyl-2-phenyl-5-heptynoate (6) in 88% yield, and then methyl 9-oxo-4-methyl-4-phenyl-2,7-nonadiynoate (13), the key intermediate, was synthesized in 6 steps from the ester 6. Intramolecular cycloaddition reaction of 13 afforded isobenzofuran 14 in 5% yield, which was converted to the tetracyclic structure 15 in the presence of Lewis acid.

Xestoquinone의 퓨란-접합된 4환계화합물에 대한 합성전략을 모델연구를 통하여 조사하였다. 출발물질로서 3-butyn-1-ol을 이용하여, 5-iodo-1-methoxymethoxypentyne(5)이 5단계를 거쳐 제조되었다. Ethyl 2-phenylpropanoate와 5의 반응으로부터 ethyl 7-methoxymethoxy-2-methyl-2-phenyl-5-heptynoate(6)가 88%의 수득율로 얻어졌으며, 6으로부터 중요한 중간체인 methyl 9-oxo-4-methyl-4-phenyl-2,7-nonadiynoate(13)가 6단계를 거쳐 합성되었다. 13의 분자내 고리화반응은 5%의 수득율로 isobenzofuran 14을 생성하였으며, Lewis acid 존재 하에서 4환고리 구조로 전환되었다.

Keywords

References

  1. Deborah, M. R.; Scheuer, P. J. J. Am. Chem. Soc. 1983, 105, 6177. https://doi.org/10.1021/ja00357a049
  2. Kobayashi, M.; Shimizu, N.; Kyogoku, Y.; Kitagawa, I. Chem. Pharm. Bull. 1985, 33(3), 1305. https://doi.org/10.1248/cpb.33.1305
  3. Nakamura, H.; Kobayashi, J.; Kobayashi, M.; Ohizumi, Y.; Hirata, Y. Chem. Lett., 1985, 713. https://doi.org/10.1021/jo00297a035
  4. Kobayashi, M.; Nakamura, H.; Kobayashi, J.; Ohizumi, Y. J. Pharmacol. Exp. Ther. 1990, 257, 82. https://doi.org/10.1021/ja00233a026
  5. Kobayashi, M.; Muroyama, A.; Nakamura, H.; Kobayashi, J.; Ohizumi, Y. J. Pharmacol. Exp. Ther. 1990, 257, 90. https://doi.org/10.1016/0006-291X(92)90656-6
  6. Sakamoto, H.; Furukawa, K.; Matsunaga, K.; Nakamura, H.; Ohizumi, Y. Biochemistry, 1995, 34, 12570. https://doi.org/10.1021/bi00039a011
  7. Lee, R. H.; Slate, D. L.; Moretti, R.; Alvi, K. A.; Crews P. Biochem. Biophys.Res. Commun. 1992, 184(2), 765. https://doi.org/10.1016/0006-291X(92)90656-6
  8. Alvi, K.; Rodriguez, J.; Diaz, M. C.; Moretti, R.; William, R. S.; Lee, R. H.; Slate, D. L.; Crews, P. J. Org. Chem. 1993, 58, 4871. https://doi.org/10.1021/jo00070a023
  9. Harada, N.; Sugioka, T.; Ando, Y.; Uda, H.; Kuriki, T. J. Am. Chem. Soc. 1988, 110, 8483. https://doi.org/10.1021/ja00233a026
  10. Harada, N.; Sugioka T.; Uda, H.; Kuriki, T. J. Org. Chem. 1990, 55, 3158. https://doi.org/10.1021/jo00297a035
  11. Kanematsu, K.; Soejima, S.; Wang, G., Tetrahedron Lett. 1991, 32, 4761. https://doi.org/10.1016/S0040-4039(00)92301-3
  12. Kojima, A.; Takemoto, T.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1996, 61, 4876. https://doi.org/10.1021/jo960773z
  13. Miyazaki, F.; Uotsu, K.; Shibasaki, M.; Tetrahedron 1998, 54, 13073. https://doi.org/10.1021/ja9819209
  14. Carlini, R.; Higgs, K.; Older, C.; Randhawa, S. J. Org. Chem. 1997, 62, 2330. https://doi.org/10.1021/ja00019a027
  15. Sutherland, H. S.; Souza, F. E. S.; Rodrigo, R. G. A. J. Org. Chem. 2001, 66, 3639. https://doi.org/10.1016/S0040-4020(02)00583-5
  16. Sutherland, H. S.; Higgs, K. C.; Taylor, N. J.; Rodrigo, R. Tetrahedron, 2001, 57, 309. https://doi.org/10.1016/S0040-4020(00)00938-8
  17. Toyooka, N.; Nagaoka, M.; Sasaki, E.; Qin, H.; Kakuda, H.; Nemoto, H. Tetrahedron, 2002, 58, 6097. https://doi.org/10.1021/jo010112o
  18. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277. https://doi.org/10.1021/jo970394l
  19. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 36, 3769. https://doi.org/10.1016/S0040-4020(98)00797-2
  20. Wills, M. S. B.; Danheiser, R. L. J. Am. Chem. Soc. 1998, 120, 9378. https://doi.org/10.1021/jo960773z

Cited by

  1. Strategies for the Synthesis of the Halenaquinol and Xestoquinol Families of Natural Products vol.2017, pp.12, 2017, https://doi.org/10.1002/ejoc.201601418