DOI QR코드

DOI QR Code

Towards Designing Environmentally Stable Conjugated Polymers with very Small Band-Gaps

  • Hong, Sung Y. (Department of Chemistry, Institute of Natural Science, Kosin University) ;
  • Kim, Sung C. (Department of Chemistry, Institute of Natural Science, Kosin University)
  • Published : 2003.11.20

Abstract

We have investigated substituent effect on the stabilization energies, and nucleus-independent chemical shifts of pentafulvalenes and on the electronic structures of the corresponding polypentafulvalenes to design environmentally stable semiconductive or conductive polymers. Geometrical optimizations of the molecules were carried out at the density functional level of theory with B3LYP hybrid functional and 6-311+G(d) basis set. Stabilization energies were estimated using isodesmic and homodesmotic reactions. As a criterion of aromaticity nucleus-independent chemical shifts of the molecules were computed using GIAO approach. For the polymers the geometrical parameters were optimized through AM1 band calculations and the electronic structures were obtained through modified extended Huckel band calculations. It is found that strong electronwithdrawing substituents increase isodesmic and homodesmotic stabilization energies of pentafulvalene, though it does not increase the aromaticity. Nitro-substituted pentafulvalene is estimated to have stabilization energy as much as azulene. However, substitution either with electron-donating groups or with electronwithdrawing groups does not significantly affect the electronic structures of polypentafulvalene and poly (vinylenedioxypentafulvalene).

Keywords

References

  1. Hong, S. Y.; Lee, K. W. Chem. Mater. 2000, 12, 155. https://doi.org/10.1021/cm990496n
  2. Hong, S. Y. Chem. Mater. 2000, 12, 495. https://doi.org/10.1021/cm990547g
  3. Doering, W. v. E. Theoretical Organic Chemistry; Butterworth;London, 1959; p 35.
  4. Matzner, E. Ph. D. Thesis; Yale University:1958.
  5. Dewar, M. J. S.; Gleicher, G. J. J. Am. Chem. Soc. 1965, 87, 685;692.
  6. Dewar, M. J. S.; de Llano, C. J. Am. Chem. Soc. 1969, 91, 789. https://doi.org/10.1021/ja01032a001
  7. Hess, B. A., Jr.; Schaad, L. J. J. Am. Chem. Soc. 1971, 93, 305;2413
  8. Hess, B. A., Jr.; Schaad, L. J. J. Org. Chem. 1971, 36, 3418. https://doi.org/10.1021/jo00821a032
  9. Aihara, J. J. Am. Chem. Soc. 1976, 98, 2750 https://doi.org/10.1021/ja00426a013
  10. Aihara, J. J. Am. Chem. Soc. 1977, 99, 2048. https://doi.org/10.1021/ja00449a006
  11. Gutman, I.; Milun, M.; Trinajstic, N. J. Am. Chem. Soc. 1977, 99,1692. https://doi.org/10.1021/ja00448a002
  12. Schaad, L. J.; Hess, B. A., Jr. Chem. Rev. 2001, 101, 1465. https://doi.org/10.1021/cr9903609
  13. Neuenschwander, M. In The Chemistry of Functional Groups.Supplement A. The Chemistry of Double-Bonded FunctionalGroups; Patai, S., Ed.; Wiley: Chichester, 1989; Vol. 2, pp 1131-1268.
  14. McAllister, M. A.; Tidwell, T. T. J. Am. Chem. Soc. 1992, 114,5362. https://doi.org/10.1021/ja00039a056
  15. Julg, A.; Francois, P. Theor. Chim. Acta 1967, 7, 249. https://doi.org/10.1007/BF01045583
  16. Kruszewski, J.; Krygowski, T. M. Bull. Acad. Pol. Sci., Ser. Sci.Chim. 1972, 20, 907.
  17. Elvidge, J. L.; Jackman, L. M. J. Chem. Soc. 1961, 859. https://doi.org/10.1039/jr9610000859
  18. Neuenschwander, M.; Bonzli, P. Helv. Chim. Acta 1991, 74, 1823. https://doi.org/10.1002/hlca.19910740825
  19. Fowler, P.; Steiner, E. J. Phys. Chem. A 1997, 101, 1409. https://doi.org/10.1021/jp9637946
  20. Bader, R. F. W.; Keith, T. A. J. Chem. Phys. 1993, 99, 3683. https://doi.org/10.1063/1.466166
  21. Fleischer, U.; Kutzelnigg, W.; Lazzeretti, P.; Mullenkamp, V. J.Am. Chem. Soc. 1994, 116, 5298. https://doi.org/10.1021/ja00091a039
  22. Schleyer, P. v. R.; Jiao, H. Pure Appl. Chem. 1996, 28, 209.
  23. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes,N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317. https://doi.org/10.1021/ja960582d
  24. Mark, V. Tetrahedron Lett. 1961, 333.
  25. Ginsberg, A. E.; Paatz, R.; Korte, F. Tetrahedron Lett. 1962, 779.
  26. Kwistowski, P. T.; West, R. J. Am. Chem. Soc. 1966, 88, 4541.
  27. Fallon, L.; Ammon, H. L.; West, R.; Rao, V. N. M. ActaCrystallogr. B 1974, 30, 2407. https://doi.org/10.1107/S0567740874007217
  28. Prinzbach, H.; Sauter, H. Angew. Chem. Int. Ed. Engl. 1972, 11,133. https://doi.org/10.1002/anie.197201331
  29. Burk, P.; Abboud, J.-L.; Koppel, I. A. J. Phys. Chem. 1996, 100,6992. https://doi.org/10.1021/jp953279s
  30. Veszpremi, T.; Takahashi, M.; Hajgato, B.; Ogasawara, J.;Sakamoto, K.; Kira, M. J. Phys. Chem. A 1998, 102, 10530. https://doi.org/10.1021/jp981761f
  31. Abboud, J.-L. M.; Castano, O.; Herreros, M.; Leito, I.; Notario,R.; Sak, K. J. Org. Chem. 1998, 63, 8995. https://doi.org/10.1021/jo981369y
  32. Nyulaszi, L.; Schleyer, P. v. R. J. Am. Chem. Soc. 1999, 121, 6872. https://doi.org/10.1021/ja983113f
  33. Balci, M.; Mckee, M. L.; Schleyer, P. v. R. J. Phys. Chem. A 2000,104, 1246. https://doi.org/10.1021/jp9922054
  34. Hess, B. A., Jr.; Schaad, L. J. Israel J. Chem. 1978, 17, 155. https://doi.org/10.1002/ijch.197800024
  35. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. https://doi.org/10.1103/PhysRev.136.B864
  36. Kohn, W.; Sham, I. J. Phys. Rev. 1965, 140, A1133. https://doi.org/10.1103/PhysRev.140.A1133
  37. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R; Zakrzewski, V. G.; Montgomery,J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.;Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.;Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;Adamo, C.; Clifford, S.; Ochterski, J.; Retersson, G. A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.;Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M.A.; Peng, C. Y.; Nanatakara, A.; Gonzalez, C.; Challacombe, M.;Gill, P. M. W.; Johnson, N. G.; Chen, W.; Wong, M. W.; Andres, J.L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98(Revision A.9); Gaussian, Inc.: Pittsburgh, PA, 1998.
  39. Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem.Soc. 1970, 92, 4796. https://doi.org/10.1021/ja00719a006
  40. George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. Theoret.Chim. Acta(Berl.) 1975, 38, 121. https://doi.org/10.1007/BF00581469
  41. George, P.; Trachtman, M.; Bock, C. W.; Brett, A. M. J. Chem.Soc. Perkin II 1976, 1222.
  42. George, P.; Trachtman, M.; Brett, A. M.; Bock, C. W. J. Chem.Soc. Perkin II 1977, 1036.
  43. Schleyer, P. v. R.; Jiao, H.; Hommes, N. J. R. v. E.; Malkin, V. G.;Malkina, O. I. J. Am. Chem. Soc. 1997, 119, 12669. https://doi.org/10.1021/ja9719135
  44. West, R.; Buffy, J. J.; Haaf, M.; Muller, T.; Gehrhus, B.; Lappert,M. F.; Apeloig, Y. J. Am. Chem. Soc. 1998, 120, 1639. https://doi.org/10.1021/ja9723287
  45. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J.Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
  46. Stewart, J. J. P. QCPE Bull.1985, 5, 62.
  47. Cui, C. X.; Kertesz, M. J. Am. Chem. Soc. 1989,111, 4216. https://doi.org/10.1021/ja00194a010
  48. Hong, S. Y.; Kim, D. Y.; Kim, C. Y.; Hoffmann, R. Macromolecules2001, 34, 6476.
  49. Hong, S. Y.; Marynick, D. S. J. Chem. Phys. 1992, 96, 5497. https://doi.org/10.1063/1.462705
  50. Hong, S. Y.; Song, J. M. J. Chem. Phys. 1997, 107, 10607. https://doi.org/10.1063/1.474175
  51. Hong, S. Y. Bull. Korean Chem. Soc. 1999, 20, 42.
  52. Yamagauchi, S.; Goto, T.; Tamao, K.Angew. Chem. Int. Ed. Engl. 2000, 39, 1695. https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1695::AID-ANIE1695>3.0.CO;2-O
  53. Hong, S. Y.; Kwon,S. J.; Kim, S. C. J. Chem. Phys. 1996, 104, 1140. https://doi.org/10.1063/1.470769
  54. Hong, S. Y.;Song, J. M. Synth. Met. 1997, 85, 1113. https://doi.org/10.1016/S0379-6779(97)80172-5
  55. Lee, K.; Sotzing,G. A. Macromolecules 2001, 34, 5746. https://doi.org/10.1021/ma0106245
  56. Pomerantz, M.; Gu, X.Synth. Met. 1997, 84, 243. https://doi.org/10.1016/S0379-6779(97)80733-3
  57. Hong, S. Y.; Marynick, D. S. Macromolecules1992, 25, 4652. https://doi.org/10.1021/ma00044a029
  58. Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin,R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17,Suppl. 1.
  59. Martin, J. L.; El-Yazal, J.; Francois, J.-P. J. Phys. Chem. 1996,100, 15358. https://doi.org/10.1021/jp960598q
  60. Bally, T.; Chai, S.; Neuenschwander, M.; Zhu, Z. J. Am. Chem.Soc. 1997, 119, 1869. https://doi.org/10.1021/ja963439t
  61. Le Goff, E. J. Am. Chem. Soc. 1962, 84, 3935.
  62. Zyweitz, T. K.; Jiao, H.; Schleyer, P. v. R.; Meijere, A. de J. Org.Chem. 1998, 63, 3417. https://doi.org/10.1021/jo980089f
  63. CRC Handbook of Chemistry and Physics, 82nd Ed.; Lide, D. R.,Ed.; CRC Press: Boca Raton, Florida, 2001-2002.
  64. Scott, A. P.; Agranat, I.; Biedermann, P. U.; Riggs, N. V.; Radom,L. J. Org. Chem. 1997, 62, 2026. https://doi.org/10.1021/jo962407l
  65. Tewari, V. P.; Srivastavs, A. K. Ind. J. Chem. 1988, 27A, 657.

Cited by

  1. Theoretical Analysis on Molecular Magnetic Properties of N-Confused Porphyrins and Its Derivatives vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2937
  2. The Fulvalenes vol.2005, pp.16, 2003, https://doi.org/10.1002/ejoc.200500231
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. Tuning the Spin, Aromaticity, and Quantum Tunneling in Computationally Designed Fulvalenes vol.83, pp.18, 2003, https://doi.org/10.1021/acs.joc.8b01541
  5. Bandgap Tunability in a One-Dimensional System vol.3, pp.4, 2003, https://doi.org/10.3390/condmat3040034