Electronic and Vibrational Spectroscopy of cis-Disothiocyanato(1,4,8,11tetraazacyclotetradecane)chromium(III) Thiocyanate

Jong-Ha Choi ${ }^{*}$ and Yu Chul Park*
Deparment of Chemishn, Andong Natonal Lnversin, Andong 760-749, Korea
Department of Chemisma. Kimmpook \ational Lniversity. Daegu 702-701, Korea
Received August 7. 2002

Abstract

 taken at 77 K are reported. The infrared and visible speetra at room temperature are also measured. The vibrational intervals due to the electronic gromed state are extracted from the far-infared and emission spectra. The ten pure electronic origins due to spin-allowed and spin-forbidden transitions are assigned by analyang the absomption and exeitation spectra. Using the ohserved transitions, a ligand fied analy sis has been perfomed to determine the bonding properties of the coordinated ligands in the title chromium(III) complex. According to the results, it is found that nitrogen atoms of the eyclan ligand have a strong σ-donor character, while the NCS ligand has medium σ - and π-donor properties toward chromium(III) ion

Key Words : Electronic transitions. Vibrational intervals, Chromium(III) complex, Ligand field analysis

Introduction

In the past several years. the preparation. ${ }^{1.2}$ kinetics. ${ }^{3}$ photochemistry. ${ }^{45}$ photophysics ${ }^{67}$ and structural analysis ${ }^{8-14}$ of the cis-diacidochromium(III) complexes containing the tetradentate marcrocyclic ligand cyclam (1.4.8.11-tetraazacyclotetradecane) have been studied extensively. We also bave described the vibrational and electronic energy levels based on the emission. far-infrared and electronic spectroscopy. ${ }^{11-18}$ The application of electronic spectroscopy to chromium(III) complexes promises to provide information concerning metal-ligand bonding propertics as well as molecular geometry. ${ }^{1.2}$ With the use of excitation or absorption spectroscopy the narrow intraconfigurational transitions due to the spin-forbidden in chromiun(III) system can be located with a precision two orders of magnitude greater than can the broad spin-allowed bands. Especially. the splittings of sharp-line electronic transitions are very sensitive to the exact bond angles around the metal. Thus it is possible to extract structural information from the electronic spectroscopy without a full X-ray structure determination. ${ }^{19.20}$

The NCS group may coordinate to a transition metal through the mitrogen or the sulfur or both. In general. Cr . Ni and Co metals iend to form $\mathrm{M}-\mathrm{N}$ bonds. where as metals of the second transition serics. such as Rh. Pd and Ir tend to form M-S bonds. ${ }^{21}$ However. the oxidation state of the metal. the nature of other ligands in a complex and steric factor also influence the mode of coordination. When the isothiocyanato group coordinates to a chromium(III) ion. it is found that the $\mathrm{Cr}-\mathrm{N}-\mathrm{C}$ and $\mathrm{N}-\mathrm{C}-\mathrm{S}$ angles fall in the range $172.5^{\circ}-$ 173.5° and $177.2^{\circ}-179.6^{\circ}$. respectively. ${ }^{10}$ So far literature give no information on the detailed ligand field properties of coordinated atoms in the title chromium(III) complex.

[^0]In this work the 77 K emission and excitation spectra. and the room temperature infrared and visible spectra of cis$[\mathrm{Cr}(\mathrm{cyclam})(\mathrm{NCS})=](\mathrm{NCS})$ have been measured. The vibrational intenals of the electronic ground state were determined from the far-infrared and emission spectra. The pure electronic origins were assigned by analyaing the absorption and excitation spectra. With the electronic transitions. a ligand ficld analysis was performed to determine the metal-ligand bonding properties for the coordinated atoms of isothiocyanato and cyclam ligands toward chromium(III) ion.

Experimental Section

The free ligand cyclam was purchased from Strem Chemicals. All chemicals were reagent grade materials and used without further purification. The cis- $\left[\mathrm{Cr}(\mathrm{cyclam})(\mathrm{NCS})_{2}\right]$ (NCS) was prepared as described in the literature. ${ }^{1}$

The far-infrared spectrum in the region $600-50 \mathrm{~cm}{ }^{1}$ was recorded with a Bruker 113 y spectrometer on a microcrystalline sample pressed into a polyethylene pellet. The mid-infrared spectrum was obtained with a Mattson Infinities series FT-IR spectrometer using a KBr pellet. The roomtemperature visible absorption spectrum was recorded with a HP 8453 diode array spectrophotometer. The emission and excitation spectra at 77 K were measured on a Spex Fluorolog-2 spectrofluorometer. The Nitrogen Devar accessory was used for the low-temperature scan. ${ }^{-1.2}$

Results and Discussion

[^1]

Figure 1. Resolved electronic absorption spectrum of cis$\left[\mathrm{Cr}\left(\mathrm{cyc} \text { lam) }(\mathrm{NCS})_{2}\right]^{-}\right.$in ayueous solution at 298 K .
${ }^{4} A_{2 y} \rightarrow{ }^{4} T_{\text {lg }}\left(O_{1_{1}}\right)$ transitions, respectively. ${ }^{23-25}$ The quartet bands have nearly symmetric profiles. In order to have some point of reference for the splittings of the two bands, we have fit the band profiles to four Gaussian curves, as seen in Figure 1 . The contribution from outside bands was corrected for fine decomvolution. A deconvolution procedure ${ }^{26}$ on the experimental band pattern yielded maxima at 19765. 20795 . 25840 and $27810 \mathrm{~cm}^{-1}$ for the noncubic split levels of ${ }^{4} T_{2 \underline{y}}$ and ${ }^{+} T_{1 g}$. respectively: These resolved peak positions were used as the observed spin-allowed transition energies in the ligand field optimization. In fact. using just one Gaussian curve instead of two yields a least squares error only four times that of the best fit (dotted line) shown in Figure 1.

Infrared Spectra. The infrared spectroscopy is useful in assigning configuration of cis and trans isomers of cyclam chromium(IIl) complexes. It is well known that cis isomer exhibits at least three bands in the $890-830 \mathrm{~cm}^{-1}$ region due to the $\mathrm{N}-\mathrm{H}$ wagging modes while the methylene vibration split into two peaks in the $830-790 \mathrm{~cm}^{-1}$ region. ${ }^{1}$ However. trans isomer shows two groups of bands. a doublet near 800 cm^{-1} arising from the secondary amine vibration and only one band near $810 \mathrm{~cm}^{-1}$ due mainly to the methylene vibration. ${ }^{\sim \rightarrow 1}$ The present complex exhibits three bands at 892.861 and 850 in the $\mathrm{N}-\mathrm{H}$ wagging frequency region. Two CH_{2} rocking bands at 797 and $808 \mathrm{~cm}^{-1}$ are also observed. These vibrational modes are not affected by differing counteranions. The infrared spectrum of the title complex was clearly consistent with the cis configuration.

Metal-ligand stretching bands occur in the far infrared range. The far-infrared spectrum of cis-[$\mathrm{Cr}(\mathrm{cyclam})(\mathrm{NCS})$ - $]$ (NCS) recorded at room temperature are presented in Figure 2.

The peaks in the range $+71-408 \mathrm{~cm}^{-1}$ can be assigned to the $\mathrm{Cr}-\mathrm{N}$ (cyclam) stretching mode. ${ }^{11,21}$ A number of absorption bands below $399 \mathrm{~cm}^{-1}$ arise from lattice vibration skeletal bending and the Cr-NCS stretching modes.

Emission Spectrum. An experimental problem lies with the difficulty in distinguishing pure electronic components from the vibronic bands that also appear in the excitation spectrum. It is required that the vibrational intervals of the

Figure 2. Far-inlirared spectrum of cis-[Cricyclam) (NCS) $1(\mathrm{NCS})$ at 298 K

Figure 3. The $19920 \mathrm{~cm}^{1}$ excited emission spectrum of cis[Cr(crelam) $(\mathrm{NCS})=[(\mathrm{NCS})$ at 77 K .
electronic ground state be obtained by comparing the emission spectrum with far-infrared spectral data. The 19920 $\mathrm{cm}^{-1}(502 \mathrm{~nm})$ excited 77 K emission spectrum of cis$\left[\mathrm{Cr}(\mathrm{cyclam})(\mathrm{NCS})_{]}\right](\mathrm{NCS})$ is shown in Figure 3. The band positions relative to the lowest zero phonon line, R_{1}, with corresponding infrared frequencies. are listed in Table 1. The emission spectrum was independent of the exciting wavelength within the first spin-allowed transition region.

The strongest peak at $13589 \mathrm{~cm}^{-1}$ is assigned as the zerophonon line. R_{1}, because a corresponding strong peak is found at $13602 \mathrm{~cm}^{-1}$ in the excitation spectrum. A hot band at $13660 \mathrm{~cm}^{-1}$ may be assigned to the second component of the ${ }^{2} \Gamma_{o} \rightarrow{ }^{ \pm} A_{-\dot{p}}$ transition. The vibronic inten als occurring in the spectrum consist of several modes that can be presumed to irvolve primarily ring torsion and angle-bending modes with frequencies in the range $150-264 \mathrm{~cm}^{-1}$. The band at +24 cm^{-1} can be assigned to a $\mathrm{Cr}-\mathrm{N}$ (cyclam) stretching mode.

Excitation Spectrum. The 77 K excitation spectrum is shown in Figure + . It was recorded by monitoring a relatively strong vibronic peak in the emission spectrum. The spectrum obtained was independent of the vibronic peak used to monitor it. The peak positions and their assignments are

Table 1. Vibrational frequencies from the 77 K F.mission and 298 K inlrated spectra for cis-[Cr(cyclam)(NCS) E](NCS) ${ }^{2}$

Emission ${ }^{3}$	Infrared	Assignment
-71 w		R_{1}
0^{6} ¢		R_{2}
	60 n. 74 m .169 s	
150) W	156 vn. 174 s. 195 n	L.attice vib.
214 vw	205*w, 221 พ. 231 แ	skeletal bends
264 w	259 m, 280 s, 300 s	fand
350	$312 \mathrm{m} ,\mathrm{322} \mathrm{s} ,\mathrm{331} \mathrm{s}, \mathrm{346w}$	v (C)-NCS)
	386 w. 399 vs	
424 vw	$408 \mathrm{sh}, 43] \mathrm{m}, 439 \mathrm{sh}$	$\} v(\mathrm{Cr}-\mathrm{N})$ and $v(\mathrm{NCS})$
542 vs	$\begin{aligned} & 53] \text { vs. } 572 \text { w. } 580 \mathrm{~m} \\ & 616 \mathrm{w} .662 \text { w. } 695 \mathrm{w} \end{aligned}$	$\} v(\mathrm{Cr}-\mathrm{N})+$ ring det.
799 vs	$757 \mathrm{~m} .797 \mathrm{m}$.	$\delta\left(\mathrm{Cl}_{2}\right)$
		(NII)
	923170.1004 ys	
1016 sh	$10.30 \mathrm{ss}, 1056 \mathrm{vs}$	

${ }^{4}$ Data in $\mathrm{cm}{ }^{1}$. "Measured from zero-phonon line at $13589 \mathrm{~cm}{ }^{\text {J }}$.

Figure 4. The $12804 \mathrm{~cm}^{-1}$ monitored excitation spectrom of cis$\left[\mathrm{Cr}(\mathrm{cyclam})(\mathrm{NCS})_{2}\right](\mathrm{NCS})$ at 77 K .
tabulated in Table 2. The calculated frequencies in parentheses were obtained by using the vibrational modes $v_{1}-v_{*}$ listed in Table 2.

Two strong peaks at 13602 and $13672 \mathrm{~cm}^{-1}$ in the excitation spectrom are assigned to the two components (R_{1} and R_{2}) of the ${ }^{+} A_{A_{g}} \rightarrow{ }^{2} F_{\rho}$ transition. The lowest-energy zerophonon line coincides with the emission origin within 3 cm^{-1}. The zero-phonon line in the excitation spectnum splits into two components $70 \mathrm{~cm}^{-1}$ apart, and it can be compared with those ${ }^{11-18}$ of the cis-[$\mathrm{Cr}($ cyclam $\left.) \mathrm{X}_{2}\right]^{\mathrm{nt}}$ system $\left(\mathrm{X}=\mathrm{NH}_{3}\right.$. en/2, $\mathrm{pn} / 2, \mathrm{~F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-} . \mathrm{N}_{3}^{-}, \mathrm{ONO}^{-} . \mathrm{ONO}_{-}^{-}$), as shown in Table 3. In general, it is not easy to locate positions of the other electronic components because the vibronic sidebands of the ${ }^{2} F_{\rho}$ levels overlap with the zero phonon lines of ${ }^{\circ} T_{1 \%}$. However the three components of the ${ }^{4} A_{2 g} \rightarrow{ }^{-} T_{1 g}$ electronic origin (T_{1}, T_{2} and T_{7}) can be found with strong intensities 803. 853 and $933 \mathrm{~cm}^{-1}$ from the lowest electronic line. R_{1} because the vibronic satellites based on these origins also

Table 2. Peak positions in the 77 K sharp-line excitation spectrum of cis-[Cr(cyclam) (NCS) 2$](\mathrm{NCS})^{\prime \prime}$

-13602	Assignment	Calcd ${ }^{\prime \prime}$		Vibronic Trequencies	Ground state Trequencies
0 l vs	k_{1}		v_{1}	17.7	17.3
70 vs	k_{2}		v_{2}	259	251
199 sh			v_{3}	325	328
245 ws	$R_{2} \cdot v_{1}$	(243)	v_{+}	489	485
3ล3 m	$R_{1} \cdot v_{3}$	(328)	v_{s}	542	549
40 m	$R_{2} \cdot v_{3}$	(398)			
486 vs	$R_{1} \cdot v_{4}$	(485)			
5.34 sh	$R_{1} \cdot v_{5}$	(549)			
550 sh	$R_{2} \cdot v_{4}$	(555)			
8035	T_{1}				
85.7 vs	T_{2}				
93.3 vs	T_{3}				
967 sh	$T_{1} \cdot v_{1}$	(976)			
1035 sth	$T_{2} \cdot v_{1}$	(1026)			
1104 n	$T_{2} \cdot v_{2}$	(104)			
1178 vm	$T_{2} \cdot v_{3}$	(181)			
1257 m	$T_{3} \cdot v_{3}$	(1261)			
1346 vm	$T_{1} \cdot v_{5}$	(1.352)			
1413 sh	$T_{3} \cdot v_{4}$	(1418)			

${ }^{\text {DDa }}$ Da in cm ${ }^{\text {. }}$. Values in parentheses represent the calculated frequencies based on the vibrational modes listed. From the emission and farinfrared spectra (Table I).

Table 3. The ${ }^{2} E_{8}$ splitting for cis- $\left[\mathrm{Cr}^{111}(\text { cuclam }) X_{2}\right]^{11-}$ complexes

$\mathrm{X}^{\prime \prime}$	Splitting ${ }^{\prime \prime}$	Anion	Ref.
NH;	83	($\left.\mathrm{BF}_{.1}\right)_{2}\left(\mathrm{NO}_{3}\right)$	11
cr 2	40	$\left(\mathrm{ClO}_{4}\right)$	12
pr 2	50	($\mathrm{ClO}_{4}{ }^{\text {a }}$	13
F	169	(CO$)^{\prime}$	14
Cl	139	(Cl)	15
Br	172	(Br)	16
N,	249	(N)	17
ONO	93	$\left(\mathrm{NO}_{2}\right)$	11
ONO:	60	$(\mathrm{NO})^{\prime}$	18
NCS	70	(NCS)	This work

${ }^{4} \mathrm{en}^{-1.2-d i a m i n o t h a n c}, \mathrm{pm}^{-1.2-d i a m i n o p r o p a n c . ~}{ }^{b}$ Data in cm^{-1}.
have similar frequencies and intensity patterns to those of the ${ }^{2} \Gamma_{\%}$ components.

The higher energy ${ }^{4} A_{\Lambda_{\rho}^{\rho}} \rightarrow{ }^{-} T_{Q_{g}}$ band was found at 20660 cm^{-1} from the second derivative of the solution absorption spectrum. as shown with a dotted line in Figure 5.

Ligand Field Analysis. The ligand field potential matrix was generated for cis-[$\left.\mathrm{Cr}(\mathrm{cyclam})(\mathrm{NCS})_{2}\right]^{\prime}$ from the coordinated six nitrogen atoms. The angular positions of ligating six atoms and adjacent two carbons were taken from the X ray crystal structure ${ }^{16}$ of $c i s-\left[\mathrm{Cr}(\mathrm{crclam})\left(\mathrm{NCS}_{2}\right]\left(\mathrm{ClO}_{4}\right)\right.$, which was determined to be monoclinic with the space group $P 2_{1} / c$: The coordinates were then rotated so as to maximize the projections of the six-coordinated atoms on the Cartesian axes centered on the chromium. The resulting Cartesian and spherical coordinates are shown in Table 4.

Figure 5. Absorption spectrum (solid line) and second derivative (dotted line) of cis- $[\mathrm{Cr}(\mathrm{cyc} \text { am })(\mathrm{NCS})]^{-}$in aqueous solution at 298 K

Table 4. Optimized Cartesian and spherical polar coordinates for ligating atoms and adjacent nitrogen atoms in cis-(Cricuclam) $\left.(\mathrm{NCS})_{2}\right]^{-a}$

Atom ${ }^{\text {b }}$	x	v	z	θ	ϕ	ψ
N_{1}	2.0624	0.1699	0.1060	90.47	-89.64	0.00
N_{2}	0.6765	2.0700	-0.0977	179.34	-73.95	0.00
N_{3}	-2.0628	c). 1053	0.1856	87.23	4.71	0.00
N_{1}	-0.0795	-0.1024	2.17662	92.70	87.88	0.00
N_{5}	0.6125	-1.9904	-0.0165	84.86	177.08	-87.66
N_{6}	0.0063	-0.0219	-1.9813	3.57	-127.83	-57.70
Cl_{1}	0.1486	-3.1443	-9.0207			
Cl_{2}	-0.0902	-0.1471	-3.1240			

"Cartesian coordinates in \mathcal{A}, polar coordinates in degrecs. ${ }^{b}$ Atomic labeling was adopled Irom Rel. 10.

Angular overlap model (AOM) parameters provide more chemical insight than crystal field parameters, and are used to interpret the electronic properties. ${ }^{25}$ The π-interaction of the isothiocyanate nitrogen with the metal ion was considered to be anisotropic. The anisotropy of metal-ligand π interaction can be expressed by e_{π} parameters in two perpendicular directions, denoted $\mathrm{e}_{\text {תs }}$ and $\mathrm{e}_{\pi c}$. By rotation of coordinates through the angle ψ. the value of $\mathrm{e}_{\pi c}$ can be set to zero, and the π-interaction of the ligand expressed entirely through $\mathrm{e}_{\text {s. }}$. The ligand field analysis was carried out through an optimized fit of experimental to calculated transition energies. Diagonalization of the 120×120 secular matrix yields the doublet and quartet energies with the appropriate degeneracies. ${ }^{2 ?}$ The method for determining the eigervalues and eigenfunctions of a $d^{\frac{2}{2}}$ ion in a ligand field from any number of coordinated atoms has been described. ${ }^{19}$ The full set of 120 single-term antisy mmetrized product wavefunctions was employed as a basis. The Hamiltonian we have used in the calculation was

$$
\begin{equation*}
\hat{H}=\sum_{i<j} \frac{e^{2}}{r_{i j}}+1_{\mathrm{I} . \mathrm{H}}+\zeta \sum_{i} f_{j} \cdot s_{j}+\alpha_{\mathrm{T}} \sum_{i} \hat{l}_{i}^{2}+2 \alpha_{\mathrm{T}} \sum_{i<j} l_{\mathrm{i}} \cdot l_{j} \tag{1}
\end{equation*}
$$

the terns of which represent the interelectronic repulsion.
ligand field potential. and spin-orbit coupling, respectively, with the last two representing the Trees correction. ${ }^{* *}$ The parameters varied during the optimization were the interelectronic repulsion parameters $B_{1}\left({ }^{\prime}\right.$ and the Trees correction parameter α_{1}, the spin-orbit coupling parameter ζ. plus the AOM parameters $\mathrm{e}_{\sigma}(\mathrm{NCS})$ and $e_{\pi}(\mathrm{NCS})$ for the isothiocyanato nitrogen-chromium. and $\mathrm{e}_{\sigma}(\mathrm{N})$ for the cyclam nitrogen-chromum. The π-interaction of amine nitrogens with $s p^{3}$ hybridization in the cyclam was assumed to be negligible. However. it is notewortly that the peptide nitrogen with $s p^{2}$ hybridization has a weak π-donor character. ${ }^{-9}$ All parameters. except $e_{\sigma}(\mathrm{NCS})$ and $e_{\pi}(\mathrm{NCS})$. were constrained to reasonable limits based on the data from other chromium(III) complexes. The seven parameters were used to fit eleven experimental energies: the five ${ }^{4} A_{2 y} \rightarrow\left\{^{2} F_{g}\right.$. $\left.{ }^{-} T_{1 \underline{y}}\right\}$ components. identified in Table 5, the lowest energy of the transition to the ${ }^{2} T_{2 y}$ state, the four ${ }^{4} A_{2 y} \rightarrow\left\{{ }^{4} T_{\Sigma y} .{ }^{4} T_{1 y}\right\}$ components. and the splitting of the ${ }^{\dagger}{ }^{5} \mathrm{E}$ state. Eigervalues were assigned to states within the doublet and quartet manifolds based on an analysis of the corresponding eigenfunctions. The function minimized was

$$
\begin{equation*}
f=10^{3} S^{2}+10^{2} \Sigma D^{2}+10 T^{2}+\Sigma Q^{2} \tag{2}
\end{equation*}
$$

where S in the first term is the ${ }^{2} E_{\mathrm{z}}$ splitting, and D, T, and Q represent the differences between experimental and calculated $\left\{{ }^{2} E_{\mathrm{g} .} .{ }^{2} T_{\lg }\right\} .{ }^{2} T_{2 g}$. and $\left\{{ }^{4} T_{\mathrm{ys}} .{ }^{4} T_{\mathrm{lg}}\right\}$ transition energies. respectively: The Powell parallel subspace optimization procedure ${ }^{3 i}$ was used to find the global minimum. The optimization was repeated several times with different sets of starting parameters to verify that the same global nuinimum was found. The results of the optimization and the parameter set used to generate the best-fit energies are also listed in Table 5 . The fit is good for the sharp line transitions. The error margins reported for the best-fit parameters in Table 5 are based only on the propagation of the assumed uncertainties in the observed peak positions. ${ }^{31}$ The quartet terms were given a very low weight to reflect the very large uncertainty in their position.

The following values were finally obtained for the ligand

Table 5. Fxperimental and calculated electronic transition energies for cis-[Cr(cyclam)(NCS)] ${ }^{(N C S Y}{ }^{2}$

State $\left(O_{h}\right)$	Fixptl	Calcd ${ }^{\text {b }}$
${ }^{2} E_{4}$	1.3602	1.3817
	1.3672	1.3874
${ }^{\circ} T_{1 k}$	14405	14186
	14455	14.32 .3
	145.35	144.37
${ }^{-1 / 2}$	20660	20728
${ }^{1} T_{20}$	19765°	19858
	20795°	20890
${ }^{1} \%$	25846	25998
	27816	26457

field parameters: $e_{\sigma}(\mathrm{N})=7512 \pm 45 . e_{\sigma}(\mathrm{NCS})=6112 \pm 58$. $e_{\pi}(\mathrm{NCS})=632 \pm 28 . B=588 \pm 6 . C=2992 \pm 38, \alpha_{\mathrm{I}}=66 \pm$ 10 and $\zeta=277 \pm 54 \mathrm{~cm}^{-1}$. A ligand field analysis of the sharp-line excitation and broad-band absomption spectra indicates that the isothiocyanato nitrogen has a medium σ and π-donor properties toward chromium(1ll) ion. These values for $e_{\sigma}(\mathrm{NCS})$ and $e_{\pi}(\mathrm{NCS})$ parameters can be compared with the values for other coordinated atoms in the chromium (III) complexes. ${ }^{32-39}$ The value of $7512 \mathrm{~cm}^{-1}$ for $e_{\sigma}(\mathrm{N})$ of the cyclam is slightly larger than $7285 \mathrm{~cm}^{-1}$ for the cis$\left[\mathrm{Cr}(\mathrm{cyclam})\left(\mathrm{N}_{3}\right) \mathrm{J}\right]\left(\mathrm{N}_{3}\right){ }^{1-}$ It is safe to conclude that the four nitrogen atoms of the macrocyclic ligand cyclam are a strong σ-donor. The AOM parameters can be used in interpreting the photobehavior of transition metal complexes. ${ }^{4 t 1}$ The observed ${ }^{-}{ }^{5}{ }_{\mathrm{g}}$ splitting. $70 \mathrm{~cm}^{-1}$ in the excitation spectrum can compared with the values ${ }^{11-18}$ of $c i s$-diacidochromium (III) complexes with the cyclam, as seen in Table 3. An orbital population analysis yields a configuration of $(x y)^{1 i 992}(x z)^{1,(11)}$ $(v z)^{189^{2}}\left(x^{2}-v^{2}\right)^{12 m i n}\left(z^{2}\right)^{1018}$ for the lowest component of the ${ }^{2} E_{\mathrm{g}}$ state. The relative d-orbital ordering from the calculations $E(x y)=1.54 \mathrm{~cm}^{-1}<E(x z)=519 \mathrm{~cm}^{-1}<\Gamma(v z)=1162 \mathrm{~cm}^{-1}<$ $E\left(r^{-2}-y^{2}\right)=20312 \mathrm{~cm}^{-1}<E\left(z^{-}\right)=21389 \mathrm{~cm}^{-1}$. The value of the Racal parameter B is about 64% of the value for a free chromium(Ill) ion in the gas phase. and it is confirmed that electron repulsions are weaker in the complex than the free ion. The ligand field parameter values reported here appear to be significant, as deduced on the basis of the manifold of sharp-line transitions which were obtained from the well resolved excitation spectrum.

Acknowledgement. This work was supported by Korea Research Foundation Grant (KRF-2002-C00012).

References

1. Ferguson. C. J.: lobe. M. L. Iffong, Chem. 1970. 9. 1781.
2. Poon. C. K.: l'un. K. C. Inorg. Chem. 1980. 19. 568.
3. Sosa. M. E.: Tobe. M. L. J. Chem. Soc. Dallom Troms. 1986. 427.
4. Kutal, C.: Adamson, A. W. Fhorg (hem. 1973, 12, 1990.
5. Kane-Maguitc, N. A. P.: Wallace, K. C.:- Miller. D. B. Thore (hem. 1985, 24, 597.
6. Forster. L. S. Chem. Rev. 1990. 90. 331.
7. Kirk. A. D. Chem. Reve 1999. 99. 1607.
8. Homse. D. A.: Mchee. V. Inong. Chom. 1984. 23. 4237.
9. Forsellini. E.: Parasassi. I.: Bombieri. G.: Tobe. M. L.: Sosa. M. Г..Acta ('mst. 1986. (12, 563.
10. Friesen, D. A.: Quail, J. W.: Waltz, W. I..: Nasheim. R. F. Acta ('rust 1997. ('53,687.
11. Choi. J. H. Chem. Phws 2000. 256. 29.
12. Choi. J. H.: Oh. I. G. Brill. Nonem Chem. Soc. 1993. I4. 348.
13. Choi. J. H. Bull. Koream Chmm. Soc. 1993. 14. 118.
14. Choi, J. It.: Ifong, Y. P.: Park, Y. C.: Ryoo. K. S. J. Photosci. 2000. 7.21
15. Choi, J. II. J. Koman ('hem. Soc. 1995. 39.501.
16. Choi. J. H.J. Fhotosci. 1997. 4. 127.
17. Choi. J. H. Spectrochim. Acta 2000. 56.t. 1653.
18. Choi. J. H. Bull. Korkan Chem. Soc. 1997. 18. 819.
19. Hoggard, P. Г. Coond (hem. Rev 1986, 70. 85.
20. Choi, J. II. Bull. Korean (hem. Soc. 1994, 15. 145.
21. Nakamoto. K. Infrated and Raman Spectra of Thorganic and Coontmation Compounds, Iart B, 5th Ed.: John Wiley \& Sons: New York. 1997.
22. Choi. J. H. Bull. Koream Chem. Soc. 1998. 19. 575.
23. Choi, J. I. Bull. Kowean (hem. Soc. 1999, 20.81.
24. Choi, J. I.: F Iong. Y. P.: Park, Y. C.: I.ce, S. H.: Ryoo. K. S. Bull. Komean Chem. Soc. 2001, 22. 107.
25. Lever. A. B. P. Inonganic Electromic Spectroscopy. 2nd Ed: Elsevier: Amsterdam. 1984.
26. GRA4S 32 1:5.21. Galactic Industries Coporation. Salem. NH $0.3079 . \mathrm{JSA}$
27. Smith. B. T.: Borle, J. M: Dongarra. J. J.: Garbort, B. S: Ikebe, Y.: Klema. V. © : Moler. C. B. Batrix Figensestem RouthesEHSPACK Guide: Spring-Verlag: Berlin. 1976.
28. Irees. R. E. Phes. Rev. 1951. 83. 756.
29. Choi. J. H.: Hoggard. P. E. Potyhedrom 1992. 11. 2399.
30. Kuester. J. I..: Mize, J. H. Optimization Techmiques with Fortran: MeGraw-I Iill: New York. 1973.
31. Clifford, A. A. Ahthrariate Frror Ahahsis: Wiler-I lasted: New York. 1973.
32. Hoggard. l'. E. Top. Curr: Chem. 1994. 171. 114.
33. Schönherr. T. Top. Cmm Chem 1997. 191. 87.
34. Choi, J. H.: Park, Y. C.: Kim. I. S.J. Photosci. 2000, 7. 97.
35. Choi, J. II.: I Iong. Y. P., Park, Y. C. J. Konean (Hem. Soc. 2001, 45, 436.
36. Choi. J. H. Bull. Korem Chem. Soc: 1999. 20. 436.
37. Choi. J. H. J. Ihotosci. 1996. 3. 43.
38. Choi. J. H.: Hong. Y. P.: Park. Y. C. Spectrochm. Acta 2002. 58t. 1599.
39. Choi, J. H. J. Photosci 2002. 9.51.
40. Vanquickenbome, J.. G.: Ceulcmans. A. Coord Chem. Rev: 1983, 48.157.

[^0]: *Comesponding author. Phone: $+82-54-820-5458$: Fax: $+82-54-$ 823-1627: L-mail: jhehoiotandong.achr

[^1]: Absorption Spectrum. The visible absorpion spectrum (solid line) of $\mathrm{cis}-[\mathrm{Cr}(\mathrm{cyclam})(\mathrm{NCS})]^{+}$in aqueous solution at room temperature is represented in Figure 1.

 It exhibits two bands. one at $20+10 \mathrm{~cm}^{1}\left(v_{1}\right)$ and the other at $27025 \mathrm{~cm}^{1}\left(V_{2}\right)$. corresponding to the $1_{2 \rho} \rightarrow{ }^{1} T_{\Upsilon n}$ and

