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ABSTRACT

In an early paper Skumanich suggested the existence of a scaling law relating the mean sunspot
magnetic fleld with the square-root of the photospheric pressure. This was derived from an analysis of
a variety of theoretical spot models including those by Yun (1968). These were based on the Schliiter-
Temesvary (S-T) similarity assumption. To answer criticisms that such modeling may have unphysical
(non-axial maxima) solutions, the S-T model was revisited, Moon et al. (1998), with an improved
vector potential function. We consider here the consequences of this work for the scaling relation. We
show that by dimensionalizing the lateral force balance equation for the S-T model one finds that a
single parameter enters as a characteristic value of the solution. This parameter yields Skumanich’s
scaling directly. Using an observed universal flux-radius relation for dark solar magnetic features (spots
and pores) for comparison, we find good to fair agreement with Yun’s characteristic value, however the

Moon et al. values deviate significantly.
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I. INTRODUCTION

In a consideration of the physical implications of
sunspot models the author found that their mean
magnetic field, scaled by square-root of the photo-
spheric pressure, was essentially a constant whether
modeled with distributed currents or current sheaths
(Skumanich 1992a). This constancy was further sup-
ported by an analysis of Stokes vector observations of
spots (Skumanich 1999), but with a somewhat different
coeflicient of proportionality.

Here we reexamine this issue in the context of the
more recent distributed current models of Moon et al.
(1998). These authors apply the methodology of Yun
(1968, 1970, 1971, 1972) but use an apparently more
physically representative vector potential. The param-
eters of this self-similar potential are obtained from a
fit to the radial distribution of observed vertical fields,
scaled by axial field and penumbral radius, but cor-
rected for the Wilson depression to a common physi-
cal depth. Tt is commonly accepted that the indicated
scaling of the observed fields yields a near self-similar
shape function. The use of a self-similar potential al-
lows one to reduce the pointwise lateral force balance
to one holding solely on the axis of the spot.

In §2 we review and discuss the Yun and Moon et al.
(hereafter Y&M) basic equations and boundary condi-
tions. In §3 we derive a non-dimensional form of their
lateral magnetic force balance equation and show that
the mean spot field appears as a characteristic value of
the solution. In §4 we compare such values, normal-
ized by the square-root of the quiet sun photospheric
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pressure, with the observed scaling values obtained by
Skumanich (1992a, 1999). Finally in §5 we discuss the
results and suggest changes in the boundary conditions
that may improve the S-T models. We conclude in §6
with a comment on model validation.

II. BASIC EQUATIONS
(a) Magnetic Potential and Field

Consider a cylindrically symmetric spot with a vec-
tor potential U(z,7) = (1/r)u(z,r)e, where z is down-
ward, r radial and ey the unit azimuthal vector. The
magnetic field is given by B = V x U. To obtain a 1-
D problem assume the Schliiter- Temesvary similarity
transformation z — z, r —x = £(z) r where z is
the similarity variable and £ is the radial scaling factor.
For given spot flux ®, Moon et al. take

u(z,r) = (9/2n) /07' exp[—(&(z)r)" ]rdr/ (1)
/OOO exp[—(&(z)r)" |rdr.

Note that u(z,r) — a(z) so that z = constant defines
a field line. Since B, (z,7) = (1/r)(du(z,r)/0r), one
finds that

Bi(z,r) = (®/7N,) &(2)° exp[-(&(z)r)" ] (2)
=  B,(2,0) exp[—(&(z)r)" ],

where N, =2 fooo exp[—z™ |zdz. In the case of B, we
use, rather than V x U,
By(21) = B.(z7) tang (3)

—(®/7Nn) §'(2) £(2)r exp[—(£(2)r)" ],
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where the field line tangent is

tang = (9r/dz), = —a€' /€ = —r'/¢,  (4)
= tan(m — ) = —tane,

and 1 is the field line inclination to the outward di-
rection. We have expressed the tangent in both (z,z)

and (z,7) space as in the latter tany can be written as
(r/2)d In B,(z,0)/dz.

(b) Reduced Lateral Force Balance

With an explicit radial dependence for the field com-
ponents one can derive the axial force balance equation,
refer to Yun (1968), which has the form

an E€" — by €2 +8TAP =0 (5)
where
an = 2(®/7N,)? /OO exp[—2?" Jzdz
0
b, = (<I>/7an)2
AP(z)8) = P(z,00)— P(z,0[¢).

Here P(z,00) = Pys(2). AP is a functional of the solu-
tion £ via the auxiliary equations for axial temperature
(heat flow) and pressure (hydrostatic balance). Eq. (5)
differs from that of Y&M in that they use the variable
y(z) = B.(2,0)//2 = (&/7N,,)1/2£(z) rather than the
more physically meaningful scale factor £(z), cf. Fla
et al. (1982). The case of n = 2 yields the Schliiter-
Temesvary equation solved by Yun.

(c) Parameter Assignment and Boundary Con-
ditions

To specify the vector potential, i.e. the parameter n,
Moon et al. fit the radial shape of the observed verti-
cal field scaled by the axial field and penumbral radius
and mapped from optical depth to physical depth at
constant radius. If BS(7) = BS(z(7(F) = 2/3),7) is the
observed field, where ¥ = r/R,, then one can write

By(2(1(7) = 2/3),7) ~ Bj(z — AZ(7),7)

A

with zg = z(7(0) = 2/3,0), AZ(F) = D(0) — D(7), and
D, the Wilson depression. Both the gradient and D
are not treated self-consistently but are assigned rea-
sonable observable values. One fits B2(zo,7)/B2(20,0)
with exp[—(£(z0)R, 7)™ | to obtain n and the value
z, = &(z0)Rp. Note that the latter defines the field
line passing through the penumbral radius projected
down to zg. This field line defines R, if the surface
value of £(zp) is known.

For a reasonable linear gradient and an assumed ra-
dial variation for D, Moon et al. find n = 1.7 and
z, = 1.39 (case 5). In this case the flux contained
within R, ®, = ®(n,z,) = .67 &, an overly low

B (z0,7) — (0B, /0z) AZ(T),

value compared to observed values and raises a question
about the meaning of R,. For the case n = 2, D =0,
Yun determined z, by equating ®(n = 2,z,) with an
empirical flux scaling value for spots (see §5) and found
z, = 1.63. Here ®, = .93 ®. This correctly defines the
penumbral flux line. It is important to note that a fit
to the shape of B(zp,7) with n = 2, D = 0 yields
z, = 1.8, Skumanich (1992b).

For a two point boundary value problem as we have
here one must specify £ at the surface and at depth.
In this case the derivative £ becomes a characteristic
value of the solution, i.e. a generalized eigenvalue. It
is this parameter that must be adjusted to its charac-
teristic value if the solution by a Runge-Kutta or “tra-
jectory” solution method is to satisfy the lower bound-
ary condition. However Y&M not only assign £ at the
surface and at depth but also assign &) at the spot sur-
face zp and use R, as the characteristic value. With
® and z, given they assign the field inclination 1, at
the penumbral radius, i.e. for the field line given by
zp. This specifies £). Note that the scaled surface gra-
dient, G = R, (d In B,(2,0)/dz)o = 2tan1,, is being
specified. Thus at the surface

20 Ry — &o
&

while at depth they impose a constant asymptotic field

T,/ Ry
Tp tan Py /Rf),

z—00: & — constant.

The asymptotic condition was imposed at a selected
lower boundary which was adjusted downward until the
photospheric solution changed by < 1%. This error also
applies to R,.

The lower boundary conditions for the auxiliary
equations follow from applying the asymptotic field
condition to the derivative of Eq. (5). The result is
that, for sufficient depth,

plz,7 =0) — p(z,00) = pgs(2),

where pys(2) is the quiet sun density. With p(z,7 = 0)
known the asymptotic value for the pressure gradi-
ent for the axial hydrostatic equation is known. The
asymptotic value for the pressure is obtained from ap-
plying Eq. (5) with £&” = 0. The surface pressure,
P(29,0), to be fit is given by a P(Teq) relation from
atmospheric models. This relation may be represented
by the requirement that P(zg) & 2 g/k(P(20), Terr) *
for the given Tox. Here x is the Rosseland opacity.
The asymptotic boundary condition for the heat equa-
tion follows from applying the equation of state to the
pressure and density while the heat flux is fixed by Teg.

INote that this equation is based on Vitense’s (1951b) and Bohm-
Vitense’s (1958) models and Vitense’s (1951a) opacities. Yun’s
opacities are a factor of 2 smaller. Such differences in the surface
boundry condition are probably not significant.
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The mixing length becomes the characteristic value for
the auxiliary system of equations.

Note that the asymptotic constant flux tube size is
problematic as the difference in temperatures between
interior and exterior drops rapidly since the density
rises rapidly inwards. This can only be due to lateral
radiative heat exchange which is very inefficient in the
convection zone. In addition the plasma beta becomes
large and thus the exterior fluid dominates the nature
and evolution of the flux tube. It is unlikely that the
constant cross-section with its attendant small presure
difference will be maintained.

III. NORMALIZED LATERAL FORCE BAL-
ANCE

To obtain the non-dimensional form of the 1-D force
balance equation we scale both spatial coordinates by
the penumbral radius R, and the pressure by the quiet
sun photospheric pressure P,s(z = 0). This yields the

variables ¢ = z/Rp,n = R, ¢, and AP = AP/P,, The
lateral force balance equation becomes

Ann(¢) 0" (€) = 1n*(¢) + BAP(n) =0 (6)

where
5 =
ATL

87 Pys / (®/TR2N,.)?

2 /000 exp[—2 z" |adx = O(1/2).

The parameter 3 (or alternatively, the mean field
®/(mR2Ny,) ) now replaces R, as the characteristic
value for a solution. It is directly the scaling parameter
considered by Skumanich. Here the boundary condi-
tions become known constants with

o : mo=xp and Ny =z, taney, (7)
¢ — o0 n — constant (8)

We note that rather than using a Runge-Kutta
method to solve all of the equations and iterating be-
tween the magnetic force equation and the auxiliary
equations as Yun does one could use finite element rep-
resentation of the variables with the boundary condi-
tions incorporated in the representation and a Newton-
Raphson linearization technique. This would be similar
to the Henyey method used in stellar interiors.

IV. CHARACTERISTIC VALUES

We now consider the solutions obtained individually
by Y&M restricting, in the case of Moon et al., our
attention to case (5) as being the most physically re-
alistic situation. Only two flux values are presented
by Moon et al. for this case. We note that two of
Yun’s studies are directly comparable as differences in
the assigned parameters between them are not signifi-
cant. The associated /8 values are listed in Table 1.

Table 1. Characteristic value of v/

\®@ 4x10%1 56x102 2.2x 10?2 2.4 x 10?2
Tot Y M Y M
4000 — — 0.96 0.82
4400 1.20 1.02 - -
n Tp Vp
M 1.70 1.39 67°0
Y 2.00 1.63 67°2

The value of Pys = 0.830 x 10° dyn cm~2 is taken from
Yun (1968). One finds that /8 & 1 in agreement with
the scaling proposed by Skumanich (1992a). However
using the more recent observationally derived square-
root relation between penumbral radius and flux, Sku-
manich (1999), where a characteristic value of B = 870
G appears, one finds that /Bos = 1.65. Thus both
calculations fall below the observed value especially at
high flux values with Moon et al. deviating the most.
It appears that the characteristic penumbral radii are
too small for the given flux.

A more direct comparison is shown in Figure 1 where
Skumanich’s radius-flux relation is illustrated. For a
detailed explanation of the data refer to Skumanich
(1999). Here we have included the Yun solutions (with
p = 67°2) for Teg = 5000 K plotted as ‘4’ while his
4400 K solution is plotted as a O. Moon et al. result for
4400 K is shown by the &. The Yun R, values appear
to fit the data at 5000 K & only tolerably at 4400 K
whereas the Moon et al. value is deviant. At T = 4000
K both authors R, deviate even more significantly, cf.
Table 1.

V. DISCUSSION

A consideration of Yun’s solutions for different fluxes
® at a given T.q shows that R, varies essentially as the
square-root of ® but with a coefficient of proportional-
ity dependent on Tog. Thus /3, is essentially.indepen-
dent of @, for fixed 1, but falls below the observations
as the temperature falls below 5000 K. This may indi-
cate that the model of the heat flow in a magnetic field
is not well modeled at lower temperatures.

One might also ask whether the correct surface
boundary condition is being used. Is it self-consistent
to fix ¥y, i.e. 1y, arbitrarily? Should one, as in the case
of the surface value of the spot pressure, use the solu-
tion of lateral force balance in the atmosphere above (
to assign a consistent value to n}?

Consider the potential field solution for a given dis-
tribution of flux at (p. It is easy to show that for the
n = 2 Yun case with AP{{) = 0, the potential solution
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Fig. 1.— Comparison of S-T model penumbral radii
with the Skumanich radius-flux (R, ®) relation. The curve
marked “DARK” is the dark radius square-root relation for
pores and spots (penumbra) ; those marked “SPOT” and
“PORE” are the relations for the magnetic radius which
contains all the observed flux. Yun’s radius values for 5000
K are given by the O, for 4400 K, by the +. Moon et al.
value for 4400 K is given by <. Deinzer’s value for 5000 K
is given by the A, for 4400 K, by the V.

in the upper half-space, ¢ < (p, is

() = zp/ (1 +2p (G0 = €)) 9)

This yields the condition that n'/n? = 1 which requires
tan(z) = z. In the Yun case then tan, = z, = 1.63,
or ¢, = 58, i.e. the potential flux tube at the spot
photosphere is more vertical than Yun’s stressed field
with its assumed 1, = 67.2°. A stressed field at this
level should have a smaller spread of its field lines than
the potential solution, i.e. it should be more vertical
and penetrate higher (smaller 7).

Deinzer (1965), in the very first study of the similar-
ity S-T model, applies just such a potential condition
to 1/ (z0) to obtain a solution of the y version of Eq.
5. Using the same asymptotic condition and basic aux-
iliary equations and boundary conditions? as Yun, he
finds that his characteristic value yo = y(20) is indepen-
dent of ®, for the range 5 — 10 x 102! Mx, but varies

2The differences in P(T.g) are not significant.

with Teg. Since y2 = (®/7)€2 we can introduce Yun’s
penumbral field line radius here to obtain

R, = (xp/yo) vV e/,

i.e. we find, as in the Y&M case, a square-root-flux
scaling for R,. Using Yun’s 2, = 1.63 and ® = 5 x
10! Mx, we plot the resulting R, values for Deinzer’s
solutions in Figure 1. The value at Teg = 5000 K is
indicated by the A and at 4400 K, by a V. It ap-
pears that using a potential upper boundary condition
increases the penumbral radii compared to the Yun so-
lutions. However this is at the expense of a penumbral
inclination which is lower than observed. Note that the
differential change with T,g appears to be the same for
both calculations.

We now consider a stressed exterior solution. Fla
et al. solve Eq. (5) in the upper half-space with
n = 2® = 24 x 102! Mx, z, = 1.63, and R, =
10 Mm. In this case &'(2p) becomes the characteris-
tic value. Their AP(z |D) was obtained by assign-
ing a Wilson depression D to an empirical sunspot
model relative to an empirical quiet-sun model with
a convective subphotosphere appended. The upper
boundary condition is that the field becomes poten-
tial asymptotically, i.e. & varies as —z~!. They use
Bet = 87 AP(zy |D)/B.(20,0)? to characterize their
models. B, (2p,0) is obtained from the empirical flux
relation ®, = 0.357 B;(20,0) R, = 0.93 &. Here
Beg(D = .5 Mm) = 3.47. They find the characteris-
tic value tant, = 1.1 at zo which is less than that for
the associated potential field, i.e. the field is stressed
compared to the associated potential field. In addition
a magnetic boundary layer is found where the field de-
viates the most from the potential solution and which
has a thickness of z, = 0.05 R, = D, i.e. the Wil-
son depression. Above this layer, i.e. at and above the
quiet-sun photosphere, the field is essentially potential
with tan, = z, = 1.63. Since observed inclinations at
the penumbral boundary are larger than 58° it would
appear that something is missing. It may be that for
larger fluxes the upper-space solutions will be different
from the one Fla et al. (1982) discussed. It would be
interesting to see if their exterior solution applies to
the interior solution for large pores. Even the larger
z, = 1.80, or ¢, = 61°, obtained by Skumanich for a
shape fit to the observed field profiles, may not be quite
adequate.

Finally we consider the scaling of spot solutions with
Berr- Although Fl& et al. (1982) consider a return flux
version of Eq. (5) in the upper half-space, it is instruc-
tive to consider the scaling they found for the abso-
lute value of the scaled logarithmic gradient |G|. They
found that, for 0.5 < feg < 6.5,

|G| = |Glo — b Besr, (10)

where |G|y is the associated potential gradient and b,
a constant (< 1) that may depend only on the flux
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parameters. Fla et al. (1982) demonstrate that this
scaling represents an underlying “global” force balance.
We hold that it should also apply to the exterior solu-
tions for the current S-T cases. This would represent a
condition on tan,.

It is of interest to ask if such a ”global” force balance
also applies to the interior solutions. Consider SB.g for
the Y&M solutions discussed here. One finds that Seg
is approximately a constant® with an average value of
2.22. Since tant, is an imposed constant then G =
2 tanep, is constant and it must follow from Eq. (10),
if a similar form applies, that S.g¢ must be constant, as
is approximately the case.

We suggest that Eq. (10), calibrated for the Y&M
flux parameters, allows one to include the effects of an
exterior asymptotic magnetic boundary condition on
the interior solution. It represents the equivalent of
the P(Tes) condition on the hydrostatic equation.

It would appear that the extant S-T models are in
reasonable agreement, for the most part, with spot size
data. The issue of an improved penumbral inclination
may need further study of the effect of the upper mag-
netic boundary condition. In addition the modeling
of heat transfer in a magnetic flux tube may require
a better treatment. For example one might consider
a mixing-length that depends on some function of the
field strength, such as a variation given by 1n((o)/n({),
with the value at {3 as the characteristic value.

VI. MODEL-OBSERVATIONS VALIDATION

In comparing® models of complexr phenomena with
finite bandwidth measurements we must do so with a
sense of evenhandedness. Models try to capture the
essence of a complex problem by a form of reductionism
with a subsequent reaggregation in which inevitable
fudge factors appear. On the other hand designed, con-
trolled, high resolution experiments are, on the whole,
unreachable for solar physics situations. Thus in com-
paring models and data we must remember the limita-
tions of both.
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