DOI QR코드

DOI QR Code

The Phase-Shift Method for the Langmuir Adsorption Isotherms at the Noble Metal (Au, Rh) Electrode Interfaces

귀금속(Au, Rh) 전극계면에서 Langmuir 흡착등온식에 관한 위상이동방법

  • Chun, Jang H. (Department of Electronic Engineering, Kwangwoon University) ;
  • Jeon, Sang K. (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Jae H. (Department of Electronic Engineering, Kwangwoon University)
  • Published : 2003.05.01

Abstract

The Langmuir adsorption isotherms of the over-potentially deposited hydrogen (OPD H) fur the cathodic $H_2$ evolution reaction (HER) at the poly-Au and $Rh|0.5M\;H_2SO_4$ aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, i.e., the phase-shift method, can be used as a new electrochemical method to determine the Langmuir adsorption isotherm $({\theta}\;vs.\;E)$ of the OPD H for the cathodic HER at the interfaces. At the poly-Au|0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.3\times10^{-6}$ and 32.2kJ/mol, respectively. At the poly-Rh|0.5M $H_2SO_4$ aqueous electrolyte interface, K and ${\Delta}G_{ads}$ of the OPD H are $4.1\times10^4\;or\;1.2\times10^{-2}$ and 19.3 or 11.0kJ/mol depending on E, respectively. In contrast to the poly-Au electrode interface, the two different Langmuir adsorption isotherms of the OPD H are observed at the poly-Rh electrode interface. The two different Langmuir adsorption isotherms of the OPD H correspond to the two different adsorption sites of the OPD H on the poly-Rh electrode surface.

Keywords

References

  1. J. Alloys Compounds v.253-4 no.481 A. Zolfaghari;F. Williard;M. Chayer;G. Jerkiewicz https://doi.org/10.1016/S0925-8388(96)03096-4
  2. Prog. Surf. Sci. v.57 no.137 G. Jerkiewicz https://doi.org/10.1016/S0079-6816(98)00015-X
  3. J. Electroanal. Chem. v.294 no.123 A. Lasia;A. Rami https://doi.org/10.1016/0022-0728(90)87140-F
  4. in Elecrochemistry and Materials Science of Cathodic Hydrogen Absorption and Adsorption v.PV 94 no.21 A. Lasia;B. E. Conway;G. Jerkiewicz(eds.)
  5. in Elecrocemistry and Materials Science of Cathodic Hydrogen Absorption and Adsorption v.PV 94 no.21 M. W. Breiter;G. Staikov;W.J. Lorenz;B. E. Conway;G. Jerkiewicz(eds.)
  6. Electrochim. Acta v.32 no.1703 D. A. Harrington;B. E. Conway https://doi.org/10.1016/0013-4686(87)80005-1
  7. J. Elecroanal. Chem. v.446 no.125 J. Barber;S. Morin S;B. E. Conway https://doi.org/10.1016/S0022-0728(97)00652-9
  8. J. Phys. Chem. v.100 no.8454 G. J erkiewicz;A. Zolfaghari https://doi.org/10.1021/jp960130n
  9. J. Electrochem. Soc. v.144 no.3034 A. Zolfaghari;M. Chayer;G. Jerkiewicz https://doi.org/10.1149/1.1837955
  10. J. Elecroanal. Chem. v.412 no.39 S. Morin;H. Dumont;B. E. Conway https://doi.org/10.1016/0022-0728(96)04612-8
  11. J. Elecroanal. Chem. v.467 no.177 A. Zolfaghari;G. Jerkiewicz https://doi.org/10.1016/S0022-0728(99)00084-4
  12. in Elecrochemistry and Materials Science of Cathodic Hydrogen Absorption and adsorption v.PV 94 no.21 G. Jerkiewicz;A. Zolfaghari;B. E. Conway;G. J erkiewicz(eds.)
  13. in Interfacial Electrochemistry B. E. Conway;A. Wickowski(ed)
  14. Elecrochim. Acta v.45 no.4075 B. E. Conway;G. Jerkiewicz https://doi.org/10.1016/S0013-4686(00)00523-5
  15. in Hydrogen at Surfaaces and Interfaces v.PV 2000 no.16 B. E. Conway;G. Jerkiewicz;G. Jerkiewicz;J. M. Feliu;B. N. Popov(eds.)
  16. in Elecrosorption E. Gileadi;E. Gileadi(ed.)
  17. J. Elecrochem. Soc. v.145 no.3794 J. H. Chun;K. H. Ra https://doi.org/10.1149/1.1838875
  18. in Hydrogen at Surfaaces and Interfaces v.PV 2000 no.16 J. H. Chun;K. H. Ra;J. M. Feliu;B. N. Popov(eds.)
  19. Int. J. Hydrogen Energy v.26 no.941 J. H. Chun;K. H. Ra;N. Y. Kim https://doi.org/10.1016/S0360-3199(01)00028-3
  20. J. Koran Elecrochem. Soc. v.5 no.131 J. H. Chun;S. K. Jeon;J. H. Lee https://doi.org/10.5229/JKES.2002.5.3.131
  21. J. Elecrochem. Soc. v.149 no.E325 J. H. Chun;K. H. Ra;N. Y. Kim https://doi.org/10.1149/1.1497402
  22. J. Korean Electrochem. Soc v.4 no.118 J. H. Chun;S. K. Jeon
  23. J. Electrocahem. Soc. v.150 no.E207 J. H. Chun;K. H. Ra;N. Y. Kim https://doi.org/10.1149/1.1554919
  24. Int. J. Hydrogen Energy v.28 J. H. Chun;S. K. Jeon
  25. Interfacial Elecrochemistry E. Gileadi;E. Kirowa-Eisner;J. Penciner
  26. in Characterization of Solid Surfaces D. M. Macarthur;P.F. Kane;G. B. Larrabee(eds.)
  27. Interfacial Electrochemistry E. Gileadi;E. Kirowa-Eisner;J. Penciner
  28. Electrode Kinetics E. Gileadi
  29. J. Elecrochem. Soc. v.143 no.3791 S. Sarangapani;B. V. Tilak;C. P. Chem https://doi.org/10.1149/1.1837291
  30. J. Electroanal. Chem. v.39 no.81 R. D. Armstrong;M. Henderson https://doi.org/10.1016/S0022-0728(72)80477-7
  31. Laplace Transforms for Electronic Engineers J. G. Holbrook
  32. in Modern Aspects of Electrochemistry v.3 no.5 E. Gileadi;B. E. Conway;JOM. Bockris;B. E. Conway(eds.)
  33. J. Korean Electrochem. Soc. v.3 no.25 J. H. Chun;K. H. Mun;C. D. Cho
  34. in Electrosorption A. K. N. Reddy;E. Gileadi(ed)
  35. Interfacial Elecrochemistry E. Gileadi;E. Kirowa-Eisner;J. Penciner
  36. in Compregensive Treatise of Elecrochemistry v.7 A. J. Apple;B. E. Conway(ed.)
  37. Electrode Kinetics E. Gileadi
  38. Electrode Kinetics E. Gileadi
  39. Experimental Electrochemistry for Chemists D. T. Sawyer;J. L. Roberts Jr.
  40. in Comprehensive Treatise of Electrochemistry v.7 M. Enyo;B. E. Conway et al.(eds.)