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Application of Wavelet Transform to Problems in Ocean Engineering
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ABSTRACT: This study presents the results of series of studies, which are muainly devoted to the application of wavelet transforms to
various problems in ocean engineering. Both continuous and discrete wavelet transforms were used. These studies attempted to solve
detection of wave directionality, detection of wave profile, and decoupling of the rolling component from free voll decay tests. The results
of these analysis, using wavelet transform,demonstrated that the wavelet transform can be a useful tool in analyzing many problems in

the filed of ocean engineering.

1. Introduction

The wavelet transform is a powerful tool for solving a
variety of physical problems. The advantage of wavelet
transform, over traditional Fourier transform, lies in the fact
that it provides information about time evolution, as well as
frequency content of the signals, while the Fourier transform
yields only frequency information.

The Fourier transform is a well-known frequency domain
approach (Newland, 1993), which has been used, extensively,
for frequency domain analysis, but it is not an appropriate
tool for analyzing transient signals.

We discuss the concept of wavelet transform. Then the
properties of Morlet and Mexican hat wavelet are described.
To detect directionality, directional wavelet is adopted. The
three examples of applications illustrated in this paper include
detection of wave directionality by Morlet wavelet, detection
of wave profile by Mexican wavelet, and decoupling of
rolling component from free roll decay test data by discrete
wavelet transform. The results of these analysis show that the
wavelet transform has a potential to be utilized in signal
analysis in fields of ocean engineering,

2. Wavelet Transform

First, the one-dimensional case of CWT(Continuous wavelet
transform) is considered. A CWT of a signal s(#) is given by
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where w() is the wavelet function, a is the scaling
parameter, and b is the translation parameter. * represents a
complex conjugate. It can be stated that the CWT is the sum
over all time of real signal s(f) multiplied by the scaled,
shifted wavelet function. The parameters a4 and b vary
continuously. For practical applications, the scale parameter a
and the translation parameter b need to be discretized. This
leads us to introduce DWT(Discrete wavelet transform). The
theory of DWT is not reviewed here. Interested readers are
referred to Daubechies (Daubechies, 1988, 1992).

3. Wavelets Used In This Study

We need to introduce wavelet functions to carry out
wavelet transforms. The wavelet functions used in the present

study are Morlet, Mexican hat and directional wavelet.

3.1 Morlet wavelet

The wavelet function used most often in the present
analysis is Morlet wavelet. The formulation of this wavelet
function is shown below

2 2

1 LS
—i@,t
y@)=m (™ —e 2)e ? @
The second term is added to satisfy the so-called



2 Sun-Hong Kwon - Hee-Sung Lee and Jun-Soo Park

adInissibility condition. However, for large @ (a)o 25.5), the
correction term is numerically negligible. Thus the complex

valued Morlet wavelet can be approximated by
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Fourier transform of this wavelet is of the form
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3.2 Mexican hat wavelet
The Mexican hat wavelet in one-dimensional space is of the

following form.

y) =(1-x"e ™" ©)
It is simply the second derivative of the Gaussian.
The two-dimensional Mexican hat function reads
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The sharp slope and oscillating characteristics of the
function enable us to detect discontinuities in the signal.

3.3 Directional wavelet
Rotation is introduced to detect directionality, as shown
below

W,(a,0,b)=a” [y (a7, (x = b))s(x)dx "
where 7 o(x)=(xcosB —ysin@,xsinf + y cosH) at
0<6<2rm.

By introducing the rotation parameter, the wavelet function
now has translation, rotation, and dilation. It is convenient to

perform the two-dimensional DWT by using Parseval's
theorem because the Fourier transform of ¥(x) has compact

support in the k domain.
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Where ¥ and S are the Fourier transform of ¥ (x) and

S(X)», respectively.

The Directional wavelet is favored for detecting wave
directionality. Examples of directional wavelets are the Morlet
wavelet, multi-directional wavelet, and the Cauchy wavelet
(Antoine, 1996a, 1996b).

The formulation of a two-dimensional Morlet wavelet with

rotation is given without a correction term, as follows
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where ko is a wave vector and £>1 is an anisotropy

parameter.

The expression for y(x) adopted in the present study is

given by
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Its Fourier transform is
(k) = e exp(—L(ek? + (k, —k,)*)) )

4. Examples of Applications

4.1 Analysis of wave directionality (Kwon et. al. 2000)
For the substantial applications, data taken from video
images were used. The video captured image presented in
Fig. 1(a) has the direction of propagation 90. The picture was
taken in a small water basin with water depth of about
45mm. Fig. 1(b) presents the distribution of 2-D wavelet
transformed gray level. The directional analysis with ko=10
and €=10 shows the direction of propagation of the waves to
be 90. The next image, which was also taken in the same
water basin, features different direction of propagation, as can
be clearly seen in Fig. 2(a). The direction of propagation was
estimated as about 77. The result of the analysis is shown in
Fig. 2(b). The results of the analysis seem quite accurate.
The image taken from the river is presented in Fig. 3(a).
The waves shown in the figure have direction of propagation
at 90. The main direction of propagation at 90 could be
clearly detected from Fig. 3(b). Fig. 3(b) also reveals the fact
that there exist many components of the waves. Oblique
waves in the river are shown in Fig. 4. The directional
wavelet transform clearly shows the main direction of the

waves.

4.2. Analysis of 2D wave profile (Kwon et. al., 2002)
The experiment was done in small wave flume, whose
dimensions were 4 m long, 03 m wide, and 0.6 m water
depth. The waves are generated by a flap-type wave-maker.
In all the experimental cases, the incoming wave height used
was 6 cm. The two halogen lamps, located under the flume

bottom, were used to illuminate the wave field.
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Fig. 3(a) Video image taken at river
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Fig. 1(b} 2-D directional wavelet transforms result
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Fig. 2(b) 2-D directional wavelet transforms result Fig. 4(b) 2-D directional wavelet transforms result
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The regular wave recorded in Fig. 5 was analyzed yielding
the result shown in Fig. 6. The numerical value 27 was
selected for dilation parameter & after numerical experiments.
The resolution of the image for the analysis was 640X480
meaning that the integration by eq. (6) had to be performed
640480 times. The integration was done by the trapezoidal
rule. Irregular wave profiles, as shown in Fig. 7, were
analyzed. The results are presented in Fig. 8.

To demonstrate the usefulness of the proposed study, the
authors tried to apply the proposed scheme to the wave field
disturbed by a submerged cylinder. Fig. 9 shows the wave
field disturbed by the submerged cylinder. The wave field,
when the crest was located at the center of the cylinder, is
shown in Fig. 9. The analyzed profiles are shown in Fig. 10.
The wave profiles were clearly detected, except at the
breaking wave region. Those regions were interpolated. The
central positions of the vertical width of the detected images
in each column of the converted date were connected, which
were assumed as free surfaces. The detected free surface is

included in Fig. 10.

Fig. 5 Regular wave image
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Fig. 6 Transformed image shown in Fig. 5
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Fig. 7 Irregular wave profile image
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Fig. 8 Transformed image shown in Fig. 7
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Fig. 9 Wave profile with a cylinder
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Fig. 10 Transformed image shown in Fig. 9
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Fig. 11 Dimension and configuration of the model
Fig. 15 Decoupled pure roll motion (level 4+level 5+level 6)
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Fig, 12 Original data of roll decay taken by image processing Fig. 16 Yaw effect (level 0+ level 1 + level 2 + level 3)
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4.3 Decoupling method of signals (Kwon et. al., 2001)

The tested model was a semi-submersible pontoon-type
offshore structure. The dimensions and the shape of the
model are shown in Fig. 11. The units are in mm. The draft
of the model was 170 mm and the initial roll angle for the
test was 14. The model was completely free during the roll
decay test.

The image processing technique was used to detect roll
angle variation. Three points, used for detecting the roll angle,
were marked on the model. The movements of these points
were recorded with a video camera. By establishing the
threshold values for suitable RGB values, these points could
be detected. A computer program was developed to calculate
the angles for every frame. The time history roll angle
variation is shown in Fig. 12. It is evident that the signal is
not a zero-mean process. Another notable problem was the
presence of noise components in the signals. Wavelet
transforms were used to solve the problem.

The DWT was applied to the signals. The results of the
DWT are usually presented on a mean-square map, which is
mainly designed
amplitudes squared by a three-dimensional plot. The details

to graphically illustrate the wavelet
about the mean-square map can be found in Newland (1993).
The mean-square map of the transformed Daubechies’20
coefficients is presented in Fig. 13. The height was plotted to
a logarithmic scale, as shown in Fig. 13. The horizontal axis
represents the translation in time, and the vertical axis
represents the level of the DWI. We wanted to propose
another method of illustration, which can be explained as
follows. The separated signals were reconstructed. The results
are presented in contour plots as shown in Fig. 14. The two
sets of plots showed that the three major contributions of the
signals can be clearly separated. Levels 7 through 9 were due
to notice. Levels 4 through 6 were due to pure roll motion.
Finally, levels 0 through 3 were thought to be due to a yaw
effect. The reconstruction of the pure roll motion was easily
accomplished by adding the signals from levels 4 through 6.
The resulting pure roll motion and yaw motion are presented
in Figs. 15 and 16, respectively. It can be seen that the
vertical shift in the roll signal disappeared, as shown in Fig.
15. The straight line in Fig. 16 indicates the yaw angle
variation as the roll motion continues. The decoupling of the
two signals was successfully carried out by DWT.

5. Conclusions

The following conclusions are drawn from this study.
1. This study demonstrated that two-dimensjonal directional

wavelet transforms can be efficient tools in the analysis of
the directionality of waves when the related parameters are
selected appropriately.

2. This study demonstrates that the Mexican hat function can
be a useful tool in the analysis of wave profile

3. The DWT appears to be a very efficient tool for decoupling
laboratory signals where time domain characteristics show
transient behavior.
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