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BOUNDARY CONTROLLABILITY OF ABSTRACT
INTEGRODIFFERENTIAL SYSTEMS

K.BALACHANDRAN AND A.LEELAMANI

ABSTRACT. In this paper we establish a set of sufficient conditions for the boundary
controllability of nonlinear integrodifferential systems and Sobolev type integrodif-
ferential systems in Banach spaces by using fixed point theorems.

1. INTRODUCTION

The controllability of nonlinear systems represented by ordinary differential equa-
tion in finite and infinite dimensional spaces has been extensively studied by means of
fixed-point principles [1,12]. Controllability of Sobolev-type nonlinear integrodifferen-
tial systems in Banach spaces has been discussed by Balachandran and Dauer [2] with
the help of the Schauder fixed point theorem. In [6], Balachandran and Sakthivel stud-
ied the controllability of Sobolev-type semilinear functional integrodifferential systems
in Banach spaces by using the Schaefer fixed point theorem.

Several abstract settings have been developed to describe the distributed control
systems on a domain in which the control is acted through the boundary. Balakrishnan
[8] showed that the solution of a parabolic boundary control equation with L? controls
can be expressed as a mild solution to an operator equation using semigroup theory.
Fattorini [10] developed a semigroup approach for boundary control systems. In (9]
Barbu discussed the general theory of boundary control systems and the existence of
solutions for boundary control systems governed by parabolic equations with nonlinear
boundary conditions.

Flie formulation of boundary control problems in terms of semigroup theory offers
the following advantage over a variational approach. The semigroup approach can treat
a problem where the spatial domain does not have C* boundary, such as for an n-
dimensional parallelepiped. Han and Park [11] studied the boundary controllability of
semilinear systems with nonlocal condition. Recently the problem of boundary con-
trollability of semilinear systems and delay integrodifferential systems in Banach spaces
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has been investigated by Balachandran and Anandhi [3,4,5] and Balachandran et al [7].
Here we study the boundary controllability of nonlinear integrodifferential systems in
Banach space by using the Schauder fixed point theorem and Sobolev-type integrodif-
ferential systems by using the Banach contraction principle.

2. INTEGRODIFFERENTIAL SYSTEMS

Let E and U be a pair of real Banach spaces with norm ||.|| and |.|, respectively.Let
o be a linear closed and densely defined operator with D(¢) C E and let 7 C X be a
linear operator with D(o) and R(r) C X, a Banach space.

Counsider the boundary control nonlinear integrodifferential system of the form

t
(1) i(t) = 0$(t)+f(t,w(t))+/0 g(t,s,z(s))ds, t€J=10,b],
tz(t) = Bu(t),
:II(O) = X9,

where B; : U — X is a linear continuous operator , the control function u € LY(J,U),
a Banach space of admissible control functions.The nonlinear operators f : J x E — E
and g: Ax E — E are given and A : (¢,5);0 <s <t <b. Let A: E — E be the linear
operator defined by

D(A) = {z € D(0); 7z = 0}, Az = oz, for z € D(A).
We shall make the following hypotheses:

: (H,) D(0) C D(r) and the restriction of 7 to D(0) is continuous relative to the
graph norm of D(o).

: (H,) The operator A is the infinitesimal generator of a compact semigroup 7'(t)
and there exists a constant M; > 0 such that || T(¢)|| < M.

: (H3) There exist a linear continuous operator B : U — E such that

oB € L(U, E),7(Bu) = Byu,

for all u € U. Also Bu(t) is continuously differentiable and || Bu|| < C||Byu|| for
all uw € U, where C is a constant.

: (Hy) For all t € (0,b] and v € U,T(t)Bu € D(A).Moreover, there exists a
positive constant K; > 0 such that ||AT(t)|| < Ki.

: (Hs) The nonlinear operators f(t,z(t)) and g(t, s, z(s)), for t,s € J, satisfy

1tz < Ly gt s, x(s)l| < Lo,

where L1 > 0 and Ly > 0.
: (Hg) The linear operator W from L?(J,U) into E defined by

b
W = / T(b— s)o — AT(b— 5)|Bu(s)ds
0
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induces an invertible operator W~! defined on L?(J,U)/KerW and there exists
a positive constant M > 0 and M3 > 0 such that || B]| < M and [|[W ™[] < M3,
Let z(t) be the solution of (1). Then we define a function z(t) = z(t) — Bu(t) and from

our assumption we see that z(t) € D(A). Hence (1) can be written in terms of A and
B as

) B1) = As(t) +oBult) + f(t,2(0) + /0 ot s, 5(s))ds, €T
z(t) = z(t) + Bu(t),
z(0) = =.

If u is continuously differentiable on [0,b], then z can be defined as a mild solution to
the Cauchy problem

¢
2(t) = Az(t)+ oBu(t) — Bu(t) + f(t,z(t)) +/0 g(t, s, z(s))ds,
z(0) = zo— Bu(0)

and the solution of (1) is given by

¢
z(t) = T(t)[zo — Bu(0)] + Bu(t) + /0 T(t—s)f(s,z(s))ds

t t 5
(3) +/0 T(t—s)[aBu(s)—Bd(s)]ds—l—/O T(t—S)[/O gls, 7 x(7))dr]ds

Since the differentiability of the control u represents an unrealistic and severe require-
ment, it is necessary to extend the concept of the solution for the general inputs
u € LY(J,U). Integrating (3) by parts, we get

t

z(t) = T(t)xo+ /0 T(t — s)o — AT(t — s)|Bu(s)ds

t t §
(4) +/0 T(t—s)f(s,w(s))ds+/0 T(t*s)[/0 gls,7,x(7))dr]ds.

Thus (4) is well defined and it is called a mild solution of the system (1).

Definition: The system (1) is said to be controllable on the interval J if for every
T9, 21 € E, there exists a control u € L?(J,U) such that z(.) of (1) satisfies z(b) = 1.

Theorem.1 If the hypotheses (H;) — (Hg) are satisfied, then the boundary control
integrodifferential system (1) is controllable on J.

Proof: Using the hypotheses (Hg), for an arbitrary function x(-) define the control

b 3
a(t) = Wz, — T(b)zy — / T(b - 8)[f (s, 2(s)) + / o(s,7,2(r))dr)ds}(8)
0 JO
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We shall now show that, when using this control, the operator defined by

(®z)(t) = T(t)zo + /0 [T(t — s)o — AT (t — s)|Bu(s)ds

t t s
+/O T(t — s)f(s,z(s))ds +/O T(t— s)[/0 g(s,7,x(7))dr]ds

has a fixed point. This fixed point is then a solution of (1).

Clearly, (®x)(b) = 1, which means that the control « steers the nonlinear integrod-
ifferential system from the initial state zo to zi in time T, provided we can obtain a
fixed point of the nonlinear operator ®. )

Let Y = C(J,X) and Yy = {z € Y : |lz(¥)|| < r, for t € J}, where the positive
constant r is given by

ro= Mol + b[Milo| + Ki]MaMs[||z1]| + Milzoll + MiLqb
+M, Lyb?) + My L1b + M, Lab?
Then, Yy is clearly a bounded, closed, convex subset of Y. We define a mapping
®:YV =Y, by

(®x)(t) = T(t)xo+ /Ot[T(t —s8)o — AT(t — $)|BW ~Hazy — T(b)zo
b s
~ [10=s)iFsato) + [ otealr)ariash)ds
0 0
t t s
+ [ 10-astsatyis+ [ 760 | st .0 dojs

Consider

t
l@a)B) < IOl + / IIT(t = 8)o — AT( — ) IIBIIW {11 ]| — T B)zol
b s
—/ HT(b—S)HII[f(&:v(S)H/ g(s,7,2(1))dr]||ds}(s)ds
0 0

1 t s
+ / HT(t—s)HHf(w(s))Hds+_/0 AT /0 958, 2(6))dbds

< Millzo|l + oMol + KM Msl|z1 |l + Mijzoll + M Lib
+ M, Lyb?] + My Lyb + M, Lob?
<7
Since f and g are continuous and ||(®z)(¢)|| < r, it follows that & is also continuous

and maps Yy into itself. Moreover, ® maps Y into a precompact subset of Yy. To prove
this, we first show that, for every fixed ¢t € J, the set

Yo(t) = {(®x)(t) : z € Yo}
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is precompact in X. This is clear for ¢t = 0, since Yy(0) = {zo}. Let t > 0 be fixed and
for 0 < € < t define

(®z)(t) = T(t)xo+ /Otﬁe[T(t — s)o — AT(t — s)]BW a1 — T(b)zo

b s
—/TW4W®ﬂW+/9®ﬂMmM%WMS

0 0

t—e t—e s
[Tt | 7t 5)[ | ato.0,2(6))

Since T'(t) is compact for every t > 0, the set
Ye(t) = {(®cz)(t) : z € Yo}
is precompact in X for every ¢,0 < € < t. Furthermore, for « € Yp, we have

[(@2)(t) — (Pez) (D)

< | - [T(t — s)o — AT (t — s)]BW " {a, — T(b)zo

b s
—/TWﬂwwﬂw+/MMmMMMMWM
0 0
t t

Al [ T =) s, as)dsl] + | HFM{MMMWMM

t—e t—e€

IA

G[ManHMgMg -+ KlMQMg]mivln + M1]]m0|| +bM L + bQMlLQ]
+eMi Ly + ebM; Lo

which implies that Y;(#) is totally bounded, that is , precompact in X. We want to
show that

O(Yp) = {Px:x € Yp}
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is an equicontinuous family of functions. For that , let to > ¢, > 0.Then we have,

1(@2)(t1) — (D) (t2)]
t1
< | /0 [T(t, — s)o — AT(t — 8) — T(ta — s)o + AT (t2 ~ 5)] X

o b s
B~ o =T (0o — /0 T(b— 8)[f (s, 2(s)) + /0 o(s, 7, 2(r))dr]ds} (s)ds]

+| t [T(t2 — s)o — AT (t2 — )| BW "y — T(b)zo

b s
- / T(b— 5)(f (s, (5)) + / g(s, 7, 2(r))dr]ds Hs)ds|
0 0
t1
+ /0 [T(t — 8) = T(ts — 8} (s, 2(s))ds|
4 /0 Tt — 5) — Tlta — 9)]] /0 " g(5,0,2(0))d6)ds)|

t2

A [ Tt = 9)f(ssa()ds] + 1 | T(ta— 8)[/08 g(s, 0, z(6))db]ds||

11 t1

IN

t1
/0 I[T(t = $)o — AT(t, — 5) — Tlt2 — 5)o
FAT(ts — 8)||[MaMs{)lz1 ]| + My o] + Mi(Lrb + Lab*)}ds

" / "Wt — 5)o — AT(t2 — 5))[[MaMa {1 || + M, o]

t1

My (L1b + Lab?)}ds + /0 b [T (41 — 5) = Ttz — 9)]|[L1 + Loblds

t2
6+ [Tt ol + Lablds
1

The compactness of T'(t), t > 0, implies that T'() is continuous in the uniform operator
topology for ¢ > 0. Thus, the right-hand side of (5), which is independent of z € Yy,
tends to zero as to — t; — 0. So, ®(Yp) is an equicontinuous family of functions.

Also, ®(Yp) is bounded in Y, and so by the Arzela-Ascoli theorem, ®(Y)) is precom-
pact. Hence, from the Schauder fixed point theorem, ® has a fixed point in ¥p. Any
fixed point of @ is a mild solution of (1) on J satisfying

(Bx)(t) = z(t) € X.

Thus, the system (1) is controllable on J.
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3. SOBOLEV-TYPE INTEGRODIFFERENTIAL SYSTEMS

Let Y and Z be Banach spaces with norms |.| and ||.|| respectively. Let o be a linear,
closed and densely defined operator with domain D(c) CY and range R(0) C Z . Let
6 be a linear operator with D(f) C Y and R(#) C X, a Banach space.

Consider the boundary control nonlinear system

t K]
(6) (Ex(t)) = oz(t)+ f(t,z(t)) +/0 k (t,s,gz(s),/o g(s,T,:c(T))dT> ds, teJ

6z(t) = Biu(t)

CL'(O) = I
where E : D(E) C Y — R(E) C Z is a linear operator, the control function u €
LY(J,U), a Banach space of admissible control functions with U as a Banach space ,

B; : U — X is a linear continuous operator, and the nonlinear operators f : J x Y » Z,
g:AxY——>Y,k:AxY><Y—>ZaregivenandA:{(t,s);O§s§t§b}.

Let y(t) = Ez(t) for ¢ € Y, then (6) can be written as
(7)) Y1) = oE'y(t)+ [t Ey()

t s
+/(; k (t,s,E‘ly(s),/O g(s,T,E"ly(T))dT) ds, te J=1]0,0]
0y(t) = DByu(t)
y(0) = wo

where § = §E~' : Z — X is a linear operator. Let A :Y — Z be a linear operator
defined by D(AE™Y) = {w € D(cE™"): 6 =0}, AE~'w = 0 E "', for w € D(AE™Y

The operators A : D(A) C Y — Z and E : D(E) C Y — Z satisfy the following
hypotheses.

: (i) A and E are closed linear operators.

: (i) D(F) € D(A) and E is bijective.

: (ili) E7: Z — D(FE) is continuous.

: (iv) The resolvent R(\, AE') is a compact operator for some A € p(AE™Y), the
resolvent set of AE™".

The hypotheses (i), (ii) and the closed graph theorem imply the boundedness of the
linear operator AE~!: Z — Z.

Let B, = {y € Y : |y| <}, for some r > 0. We shall make the following hypotheses:

: (Cy) D(cE~') C D(0) and the restriction of 6 to D(c E~!) is continuous relative
to the graph norm of D(cE~1).
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: (Cy) The operator AE~" is the infinitesimal generator of a Cop-semigroup T'(t)
on Z and there exists a constant M > 0 such that | T(¢)|| < M.

: (C3) There exists a linear continuous operator B : U — Z such that ocE B¢
L(U, Z),6(Bu) = Byu, for all u € U. Also, Bu(t) is continuously differentiable
and ||Bu|] < C||Byu] for all v € U, where C is a constant.

: (Cy) For all t € (0,b] and u € U, T( Bu € D(AE~!). Moreover, there exists a
positive function v € L'(0,b) such that [|AE~!T(¢)B| < v(t), a.e. t € (0,b).

: (Cs) f:JxY — Z is continuous and there exist constants My, Ma > 0 such
that for t € A and vy,vo € B, we have

1 (t,01) = F(t,v2)l| < Miflvr — 2]
and
My = maXHf(t 0)]].

: (Cs) k: AxY xY — Z is continuous and there exist constants Ni,Ny >0
such that for (¢,s) € A, z1,29 € By and y1,y2 € Y we have

Ik(t, 5,21, 51) — k(t, 5,22, 42) || € Nifllzy — zall + [ly1 — v2ll]

and

Ny = max ||k(t,s,0,0)|
(t,s)eA

: (C7) g : AxY — Y is continuous and there exist constants Li,Ly > 0 such
that for (¢,s) € A | and x1, 22 € B, we have

. ||(](t, S, 5171) - g(t/ S, *’E?)H S Llel - x?”
and
Ly = £,5,0
2= max llg(t, s, 0)
Let y(t) be the solution of (7). Then define the function z(t) = y(t) — Bu(t) and from

the assumption it follows that z(t) € D(AE™!). Hence (7) can be written in terms of
A and B as

y(t) = AE '2(t)+oE 'Bu(t) + f(t, B 'y(1))

t
+/k‘<t,5,E /QSTE y(r ))d7>ds, teJ
0 0

y(t) = 2(t) + Bu(t)
y(0) = wo

If u is continuously differentiable on [0, 5] then z can be defined as a mild solution to
the Cauchy problem
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vz'(t) = AE7'z(t) + cE~'Bu(t) — Bu'(t) + f(t, E"'y(t))

¢
+/ k (t,s,E‘ / g(s, 7, E71 ))dT) ds,
0 0

2(0) = y(0) — Bu(0)
and the solution of (7) is given by

y(t) = T()[y(0) — Bu(0)] + Bu(t)

t
+/0 T(t - s) [oEilBu( Y — Bu/(s) + f(s, E” y(s))]

+/OtT(t ~3) [/Osk (sm E‘ly(f)v/;g(ﬂn,E‘ly(n))dn> dT] ds

Since the differentiability of the control u represents an unrealistic and severe require-
ment, it is necessary to extend the concept of a solution for general inputs u € L(J,U).
Integrating the above equation by parts, we get

y(t) = T()y(0)+ /t [T(t - SYoE'B — AET'T(t - s)B] u(s)ds
0
4 [ 1= 7B o)
0
! : 3 -1 ’ Ly T| ds
w [ = [Tk (sm5 v, [ o B v)in) dr]
which is well defined. Hence the mild solution of (6) is given by
z(t) = E'T(t)Ex(0)+ /CE'l [T(t — s)oE™'B — AE7'T(t —~ 5)B] u(s)ds
0
+/0 E Tt —s)f(s,z(s))ds

(8) +/OtE‘1T(t ) [/0 ! <3,T,$(7), ./OTg(T,n,x(n))dn> dT} ds

Further, assume the following conditions.

: (Cg) There exist constants N, K > 0 such that fob v(t) < K and |[E7}| < N.
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: (Cy) The linear operator W from L?(J,U) into Y defined by
b
Wu = / EY[T(b-5)0E B~ AE'T(b— s)B] u(s)ds
0

induces an invertible operator W~ defined on L2(J,U)/KerW, there exists a
constant K7 > 0 such that |W™1| < K.

: (010) NM||Exgll + N [bMHO‘E_lBH +K] Kl[\.’lJl\ + NMHEI‘()H + L] + L <,
where L = bNM[MlT + MQ] + bNM(Nle + bN1Lir +bN1Loy + NQ)

: (Cn) Let ¢ = bBNMM, + B2NMM,; + BB NMLN\(1 + K:bNM|oE™'B|| +
NKKj) be such that 0 < ¢ < 1.

Theorem.2 If the hypotheses (C1) — (Cy1) are satisfied , then the boundary control
nonlinear system (6) is controllable on J.

Proof: Using the hypotheses (Cy), for an arbitrary function z(-), define the control

u(t) = W;l{.”cl — E7'T(b)Exy — /Ob E7T(b - s)f(s,z(s))ds

- /Ob E~'T(b—s) [/0 k (s,r,x(T)a /()Tg(’i”,’r],x(n))dn) dT] ds}(t)

Let V = C(J, B;). Using this control, it will be shown that the operator ® defined
by

dz(t) = E'T(t)Exo+ /t E~'[T(t - s)oE"'B— AE"'T(t — 5)B]
0
b
W_l{xl — E'IT(b)ExO — /0 E_lT(b —7)f(r,z(7))dr

- /Ob E7'T(b—3s) {/Os k (s,T,a:(T), /OT 9(7,n,x(n))d77) d’T:} ds}(s)ds

+/0 E7'T(t —s)f(s,z(s))ds

+/0tE“1T(t— ) [/Ok <3,T,x(’r),/OTg(T,n,x(n))dn> dT] ds

has a fixed point. This fixed point is then a solution of (6).
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Clearly ®z(b) = z1, which means that the control u steers the system from the initial
state zo to x; in time b provided the operator ® has a fixed point.

First to see that ® maps V into itself. For z € V,

[@z(2)l]

<

IA

IA

IA IA

|E~'T(t)Exol + | /t E7'[T(t—s)oE™'B - AE™'T(t - s)B]
0
b
WYz, — E7'T(b)Exy - /0 E7YT(b —7)f(r,2(r))dr

—/ObE_lT(b~s) /Ok (s,T,x(T),/OTg(T,n,m(n))dn> df} ds}(s)ds|
H [ BTG - (s 0l

# [ B0 [ [+ (sms), [ ot stnan) ) as

t
|E7 I T(8) Eao| +/O [E7YIT(t ~ s)llloE~" Bl + [|AE™'T(t - 5)B]]
W= {lz1] + 1B~ T(b) Bl

b b
+ /0 YT - ) (I (7, 2(r)) = £, 0)| + [1£ (r, 0)|] dr + /0 BTG - 9]
/O[Hk (5,7,:1;(7'),/0 g(T,mx(n))dn)—k(s,T,O,O)H—+—||k(s,7',0,0)||} drds}ds
t t
+ /0 BTG - )| [1 (5,2(5)) — £(5,0)]) + 1 (5, 0) ] ds + /0 BT - 9)]
| [uk (() / g(nw(n))dn) ~ k(s,7,0,0)] + llk(s,r,o,mu] drds

NM||Ezol| + N [bM|cE~'B|| + K| K1 {|z1| + NM||Ezol| + bNM{Mr + Mo}

TBNM [ /0 " Nillo(r)ldr + /0 " Nillg(r, 7, o(n))dnldr + Nz}}

FONMMsr + 3] + o801 [ Nilleo)lar + [ Nllar.n,sta)dnlar + Moy

NM|Exo| + N [bM|0E™'B| + K| K1{|z1| + NM||Ezo|| + L} + L
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Thus ® maps V into itself. Now, for z,,z2 € V we have

@1 (t) — Pz2(t)|l

t
< / B [IT(t - 9)l0E~ B| + |AE~\T(t — 5B
b
9 1B TG = Dl () - Fra(r)dr
b s T
+ [N tire - ol [ (() / g(ﬂn,wl(n))dn)
_k ( (o), [ Tg(T,n,mQ(n))dn) Vdr|dn}ds
t
+ [ 1B = 9 (175,01 (9) = sl s

+/0t|E—1|HT(t—s)||{|| /Os{k (s,T,xl(T),/Jg(nmm(n))@)
~k (symaa(r), [ atrmaa(o)dn ) arlyds

IA

i
/0 N [M||cE7'B| + v(t)] K1 {bNM M ||z1(r — z2(7)|
+bN MbN {||z1 (1) — z2(7)

||
A /0 " glr, 7,21 (n))dn - /0 " g(r.m, za(m))dnll} ds
+bNMM;||z1(s) — z2(s)|| + BNMbN, ||z1 (1) — zo(7)||

T T
+oN 0| [ arman)dn = [ otrn.za(m)an]

< (bNM|oE™'B| + NK|K:[bNMM; + ¥* NMM; + > NMN, L))
+bNMM; + V> NMM, + B>’ NMN1 L) ||z1(t) — 22(t)||
< gllzi(t) —z2(t)||

Therefore, ® is a contraction mapping.

Hence by the Banach fixed point theorem there exists a unique fixed point z € Y
such that ®z(t) = z(¢). Any fixed point of ® is a mild solution of (6) on J satisfying
x(b) = z1. Thus system (6) is controllable on J.
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