

가

*, **

EEE Part Qualification for Commercial Satellite

Chang-Ho Lee*, Dong-In Han**

Abstract

Traditionally, for space program whose operation environment is severe, high reliability parts, that is class s microcircuit, JANS level semiconductor, and ER passive parts, are reliable choices. But in some case, we must use 'Non-standard Part' which is not verified as high reliability standard part. To use 'Non-standard Part' in space application, the manufacturer should qualify the part and screen potential week part from the flight lot. In this technical memo, I introduce the flight part verification process for KOMPSAT 1 and KOMPSAT 2 program.

Class S High-Reliability Part Microcircuit, JANS Discrete Semiconductor, ER(Established Reliability) Passive R High-Reliability Part 가 Screening 1 (flight part), (EEE part screening), (standard part), (non-standard part) (burn in), 1. 가

/ chlee@kari.re.kr

Korea Aerospace Research Institute · 173

/ dihan@kari.re.kr

NASA **GSFC** (High-Reliability Part) (Class S) PPL (Preferred Part List) 21 (Microcircuit), JANS (Discrete Semiconductor), ER (Established Reliability) R (Passive) 1 GSFC PPL NASA MIL-STD-975 2.3 (Screening) (Preferred Part List) 21 2 (Grade 2) 1 (Screening) . QPL QML (COTS, Commercial Off The Shelf) (Quality Level) (QCI, Quality Conformance Inspection) 가 2 IGG Screening LAT / QCI On Sample 2. Qualified 2.1 (Standard Part) 1. Sc reening (Standard Part) Lot 1 NASA MIL-STD-975 PPL(Preferred Part (Sample) List) 21 2 (Grade 2) (COTS, Commercial Off The Shelf) (Non-standard Part) (Nonstandard Part) 2.2 QML **QPL** 가 가 (Specification), 2.4 QML(Qualified Manufacturer List) QPL 2 (Qualified Part List) MIL QPL, 174 •

ESA QPL, GSFC PPL 21

(PPL, Preferred

Part List)

3. (Nonstandard Part)

가 QPL · QML , ESA

가 ,

가

Screening

· , 가

3

2.

1. (Screening)

	Screening		
Generic Electric and Electronic Component	MIL-STD-202		
Semiconductor Device	MIL-STD-750		
Microcircuit	MIL-STD-883		
Custom Electromagnetic Device	MIL-STD-981		
Electrical Connector	MIL-STD-1344		

(Pilot Test)

3. Screening

3.1 (Bum In)

(Failure Rate) (Bathtub)

(Early Life Failure)

Korea Aerospace Research Institute · 175

Infant Mortality Failure Freak Failure . Infant Mortality Failure 0.05 1%

. Freak Failure

2 10%

4

5 Infant Mortality Freak

4.

가 (Burn

In)

176 ·

Steady State Reverse Bias, Steady State Forward Bias, Parallel Excitation (Burn In) 가 (Burn In)

6. Burn In Socket (Bias 가 . IGG)

3.2 PIND

7. **PIND** Shaker (IGG

PIND(Particle Impact Noise Detect) (Cavity) (Hermetic)

(Burn In)

가

(Die)
(Bond Wire)

(Short
Circuit)

PIND
7

Vibration Shaker, Shaker Driver,
PIND Transducer, Amplifier, Oscilloscope
. 7 PIND
.

3.3 (Leak)

(Leak) (Seal)
(Cavity)
(Hermetic) (Sealing)
(Fine Leak)
(Gross Leak) .

가 가 가 가 .
Krypton 85 Helium Fluoro

carbon .

8. (Feed through 7 + . IGG)

3.4 (The mal Cycling)

가

가

가 (Thermal Cycling) . 가 (Thermal Shock)

10

9. Leak Test 가 (IGG)

3.5 (DPA, Destructive Physical Analysis)

(DPA, Destructive Physical Analysis) 7

- 1. External Optical Inspection
- 2. Electrical Measurement
- 3. PIND
- 4. Hermetic Seal Test

Korea Aerospace Research Institute · 177

5. Solderability	Terminal Strength	Test						
6. X-ray Inspecti	ion							
7. De-Encapsulation			1.	, "	COTS	rs 가		
8. Internal Optical Inspection			", KARI-SB-TM-2001-002, 2001					
9. SEM Inspection	on		2.	, "				
10. Wire Bond S	Strength Test			″,		, 9	1	
11. Die Shear St	-		200	1, pp. 173-	191			
12. Microsection	Inspection		3.		2		1	
				,		,	2000	
De-Encapsulation		(Die)	pp	321-327				
Cavity	가							
PIND								
	. Internal Optical In							
	Layout	Wire						
Bond	. SEM							
Die Layout Meta	lization	•						
71								
가	•							
4	•							
		71						
		가						
•								
. 1	TRW가							
2	IKW/							
ィングログス IGG가								
100/	•							