IT 산업용 화학소재 개발 및 표준화 현황

정밀화학과 공업연구관 정의식

02)509-7225 esjeong@ats.go.kr

1. 개 요

화학산업도 타 산업과 마찬가지로 200의 단순 계조/판매를 통해 부가가치를 창출하는 장치산업에 기초를 둔 1차 산업으로부터 210에는 서비스개념이 접목된 "Total Service 사업"으로 그 패러다임이 전환되고 있다. 전형적 장치산업인 과거의 화학산업병주안에 머물러서는 더이상 부가가치창출이어렵고 정일/의약 및 전자재료 등과 같이 타 산업부분과의 연계를 통한 사업다각화 및 글로벌화를 전략적으로 추진해야만 부가가치가 보장된다. 이는 핵심기술이 거대 초기투자를 필요로 하는 자본집약적

장치산업에 요구되던 공정기술로부터 전자/통신/재 료/생물/의학 등 복합적인 기술로 전환됨을 뜻한다.

고부가가치를 가진 화학산업으로서 생명공학, 정 밀화학 등을 쉽게 떠올릴 수 있지만 현재 가장 각 광을 받고 있는 IT산업의 근간을 이루는 재료산업 역시 화학산업의 중요한 한 뿌리라고 생각하는 사 람은 그리 않지 않다. 우리나라가 처해있는 현실을 보면 우리가 가야할 길 역시 IT산업이고 또한 삼 성전자가 세계 DRAM생산의 가장 많은 양을 생산 한다는 사실로 증명되어져 왔다.

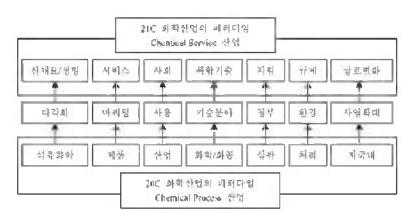


그림 1 화학산업 패러다임의 변화

60년대부터 불어온 경제화의 바람은 우리를 현 재 수준까지 끌어올리는데 지대한 공헌을 하였다. 하지만, 그 시대조류에서 우리가 간과해왔던 것은 기초기술이었다. 현 우리산업에서 가장 치명적인 부분이 생산기술이 아닌 기초기술의 취약에서 오는 원천기술 미흡에 있다고 해도 과언이 아니다. 따라. 서 일부품목에서 세계 1위를 점유하고 있지만 원천 기술 사용에 따른 로얄티를 지급하여야만 했다. 물 론 재료기술만이 TT 산업의 원천기술이라고 할 수. 있다는 것은 주목할 만한 사실이다.

반도체와 LCD분야에서 세계적인 경쟁력을 갖고 있는 우리나라가, 아직까지 IT 재료 분야에 화확산. 업의 지원 및 기술확보노력이 부족했다는 것은 계 속해서 지적되어온 문계점이다. 아직까지는 Formulation기술을 주축으로 하는 수준이며, 원천특허 - 제품주기, 다품종, 엄격한 제품신뢰성 등을 특징으 미확보와 원재료 계조기술의 해외의존도, 특히 일 본 의존도가 매우 높은 미성숙 사업이다. 따라서 장 기적인 전자산업의 발전에 대한 지원기능과 국내 재료기술의 발전을 위해서라도 IT 재료 산업의 발 전은 필수 불가결한 것이다.

2. 현 황

TT용 재료산업은 2000년 현재 세계수요가 총 730억불에 이르고 향후 연평균 성장률이 20%이상. 예상되는 고성장 산업이다. 그러나, 세계 10대 [T] 용 재료 업체 중 6개 업체가 일본업체이며 대부분 의 계품에서 주요 일본기업이 세계 1위의 시장점유 율을 점하고 있어 우리나라의 경우 대일본 의존도

가 매우 높은 분야이다.

- FT 산업에 사용되는 재료의 종류는 매우 다양하 - 고 광범위하며 특히 'On Time On Place"가 요구 - 된다. 유/무기화학계품에서 첨단 세라믹/금속재료 - 까지 광범위한 계료가 사용되며 단일품목만으로 사 - 업성이 부족한 계품이 많으며, 유사품목의 계열화 에 의한 사업화가 필요하다. 또한 정밀화학과 같이 - 기술집약도가 높으며, 합성기술, 배합기술, 디바이 - 스 조립기술 및 성능평가기술 등 복합적 기술확보 는 없지만 많은 원천기술이 재료기술에 치중하여 - 가 필수적인 사업으로 기술확보시 파급효과가 매우 크다고 할 수 있다. 특히 수요자의 요구기준이 매우 - 까다롭고 수요자 별로 별도 Spec을 마련하기 때문 - 에 수요자와 공급자의 협력관계가 밀접해야 하고 - 전반적으로 재료의 Life cycle이 짧고 기술변화 속 - 도가 빠르다. 21세기 IT 산업용 소재도 역시 짧은 - 로 하고 있으며 광범위한 첨단산업을 그 수요대상 -으로 하고 있으므로 지속적이며 빠른 기술변화에 - 대응하는 기술역량을 확보하고 단순 원료사업보다. - 는 가공된 소재 또는 부품으로 value chain을 연장 하여 고부가가치를 추구하는 것이 바람직한 것으로 판단된다.

> 국내의 FT산업은 90년 후반부터 반도체 DRAM 및 TPT-LCD에서 세계 1위의 위치로 또약하였으 나, 기반이 되는 원천재료기술에서는 경쟁력이 때 우 취약하다. 세계 IT 재료 730억불중 10% 내외의 수요기반을 가지고 있음에도, 핵심재료의 해외의존 도, 특히 일본 의존도가 매우 높다. IT 재료 중에서 도 유기재료 분야에 있어서는 수입비중이 80%

이상이며, 일부재료는 전량수입에 의존하고 있어... 재료기술의 종속을 벗어나지 못하고 있다. 또한 국 내IT 재료업체들은 대부분 합작, 혹은 기술도입에 의해 이루어졌으며, 자체개발에 의한 사업화는 일 부 품목에 한정되어 있다.

국내 IT 재료산업의 최대 취약점은 원천물질특허 부재, 관련 산업계/정부/전문연구기관간의 협력 Synergy부재 및 장기적 안목에서의 R&D 투자미 흡을 돌 수 있다. 원천물질특허의 확보는 유기EL 분야에서 코닥이 차지하는 위치에서 볼 수 있듯이, 시장을 선점하고 기술우위를 확보할 수 있는 기반 이 된다. IT 재료 산업의 육성을 위한 협력 Symergy부재는 최근 IT 재료 분야에 대한 관심 및 개발 의 활성화로 인해 정부에서도 '부품/재료 육성방 안"을 확정하기도 하였지만, 국내 화확업체들 간의 중복투자,대기업/중소기업/벤처기업간의 대승적 차. 을 광재료분야의 예를 보더라도 선진국에서는 기초 - 구하는 것이 바람직한 것으로 판단된다.

- 소재부터 최종 제품까지 활발한 연구가 이루어 지 - 고 있으나, 귝내에서는 실제 상업화에 있어서는 핵 - 심재료에 대한 사업화보다는 디바이스 사업에 투자 "가 집중되고 있는 것이 현실이다. 특히 광재료 분야 에서는 Pluorinated Monomer의 설계, 합성 및 중 합이 핵심기술임에도 관련 국내 화학업체의 기술력 - 취약 및 관련 원천물질 특허의 선진국 독점으로 인 - 해 유기 광재료 분야의 사업화에는 많은 어려움이 있다

21세기 IT 산업용 신화학소계도 역시 짧은 계품 - 주기, 다품종, 엄격한 제품신뢰성 등을 특징으로 하 - 며, 시장규모가 2005년경 수백조원에 달할 것으로 - 예상되는 고성장분야이다. 아래의 그림과 같이 광 범위한 첨단산업을 그 수요대상으로 하고 있으므로 - 지속적이며 빠른 기술변화에 대응하는 기술역량을 확보하고 단순 원료사업보다는 가공된 소재 또는 원에서의 협력이 전무한 상황이다. 향후 각광을 받 - 부품으로 value chain을 연장하여 고부가가치를 추

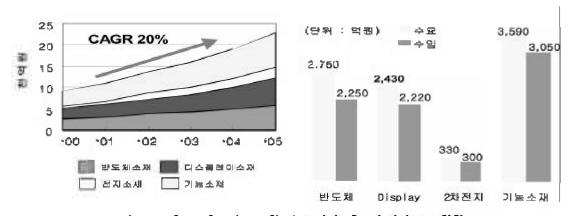


그림 2, 국내 IT 재료 수요통항 및 분야별 재료 수입의존도 현황

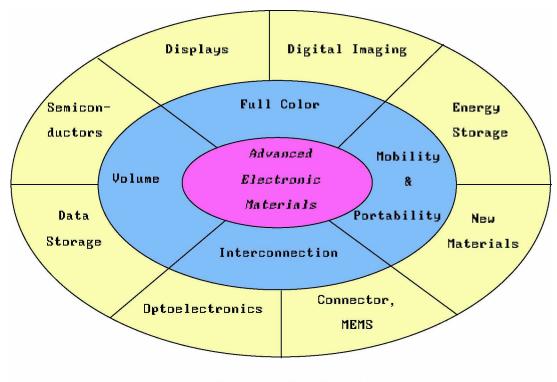


그림 3. IT용 제료의 적용 분야

3. IT 산업 시장 동향

IT 용 재료산업은 수요처에 따라 크게 반도체, PCB, 디스플러이, 통신, 전지 및 기타재료등으로 구분 가능하다. 반도체/회로관련 재료에는 웨이퍼, 포토마스크, 포토레지스트, 공정약품, 리드프레임, 반도체봉지재(EMC) 등이 핵심재료라 할 수 있다. 디스플레이 재료에는 LCD용 액정, 편광필름, ITO 유리기판, 도광판, 폴리이미드 및 컬러레지스트등이

핵심재료라 할 수 있으며, 이외에 EL, FED, 플라스 탁 LCD 관련 재료가 차세대 재료라 할 수 있다. 이러한 분류에 의한 각 IT 재료산업의 2000년 시장 규모가 그림 4에 잘 나타나 있다. 그림 4에서 보는 바와 같이 반도체재료시장이 최대규모를 나타내며 뒤를 이어 PCB, 데이터저장매체의 시장규모가 크다. 디스플레이의 경우는 평판디스플레이 중 LCD 분야중심으로 하여 35억불의 시장규모를 가지고 있다.

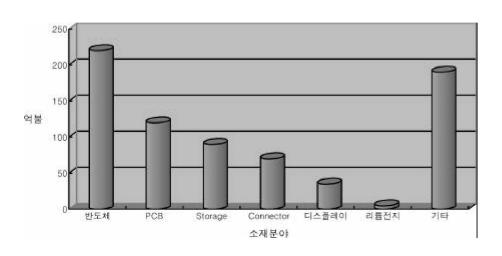


그림 4, 2000년 IF 재료 분야별 시장규모

4. 우리원의 추진 현황

그림 4에서 살펴본 대로 인쇄회로용 배선 기판 (PCB)은 1950년대에 개발된 이래로 전방위산업인 컴퓨터, 전자계품, 이동 통신기기 및 각종 정보통신 화 같은 응용분야까지 넓게 확대되었고, 그의 구성도 복잡화, 다양화되는 추세이며 미국전자회로협회 (IPC)가 예측한 2002년 전세계 PCB 시장은 전년에 비해 \$%성장한 344억9300만 달러 규모를 형성하고 이중 한국은 7%성장한 18억4900만 달러(5,3%, 세계 5위) 규모를 형성할 것으로 예측하고 있다.

전자계품에 사용되는 부품은 인쇄회로용 배선기 판(PCB)에 반도체합등을 표면에 탑재한 것으로서, 부품의 표면 마운팅을 위해 인쇄회로운 배선기판 (PCB)의 구리 회로부에 표면처리가 매우 중요해지 - 증가세가 이어지고 있으며 기술개발의 속도가 매우

납 보존계(이하 OSP), 땜납(solder)으로 도금된 구 - 리 배선 패턴을 갖는 방법을 사용하고 있으며 현재 - 표면처리방법으로 가장 많이 사용되는 것은 HASL (Hot Air Solder Levelling)공법에 의한 납코팅 방 장비의 핵심 부품으로 오늘날에 와서는 IC화 및 LSI - 식이나, HASL(Hot Air Solder Levelling)공법에 의한 납코팅 방법은 유해물질인 중금속 납/주석의 - 합금을 사용하고 있으므로 HASL 공법에 의한 납 - 코팅 방식을 대처하기 위한 대안으로 OSP처리 방 - 법이 대투되고 있으며 그 사용 범위가 꾸준히 중대 되고 있다.

- 이와 같이 우리나라의 PCB계조산업은 갈수록 고 - 도화되고 고집적화하여 그 시장범위를 넓혀가고 있 - 으며 단면 양면 등의 단순기판에서 점차로 고도화 되고 기술 집약적인 MLB(Muit layer PCB)로 그 고 있으며, 주된 표면처리 방법으로는 금, 유기 땜 때로고 수요 또한 보다 고급화된 제품을 요구하고 격, 품질요건 등이 기술속도에 비하여 미비한 상태 이고 확립이 안된 상태에서 각 제조사별로 품질 규 격을 각기 만들어 사용하고 있는 상황이며 그나마 대기업의 경우에는 품질 검수조건을 갖추고 있으나. 중소기업인 경우 기술력 이 부족하여 계품의 품질 성능을 확인할 수 없음으로 관리가 계대로 이루어 지지 않아 대량불량이 발생할 소지가 많고 이와 같 은 불량률의 증가로 생산성의 저하가 우려되고 있 으므로 그에 대한 품질시험 규정을 시급히 확립하 여 이에 대처할 필요가 요구되고 있다.

우리원에서는 PCB 전처리 화학약품에 대한 단 계적 표준화를 추구하기 위하여 일차로 수용성 플 럭스에 대한 연구를 마치고 급년중에 '수평' HASL(Hot Air Solder Levelling)용 수용성 플릭 스 시험방법"에 대한 KS규격을 계정할 예정이다. 또한 2002년 산기반 표준화연구 사업의 신규과제 로 'CSP(Organic Solderability Preservative)의 시험방법"을 수행할 예정이며, 연구결과 및 현장적 용 결과를 토대로 KS규격을 제정할 예정이며, 국 계규격으로의 도입을 추진할 예정이다.

이러한 IT용 화학소재의 단계적 국산화 개발 및 표준화를 통하여 수입에 의존하고 있는 국내 FT용 화학소재 산업의 국산화 개발을 지원하고, 현장에 서의 품질관리 능력 향상을 통하여 국계경쟁력 강 화에 이바지하고자 한다.

5. 21세기 IT용 신화학소재 사업의 발전 세계시장을 석권하고 있는 일본 FT용 재료 업체

있으나 계품생산에 필요한 부품 및 약품에 대한 규 _ 돌의 동향을 살펴보면 향후 우리나라의 21세기 IT - 산업용 신화학소재의 발전전략을 수립하는데 있어서 - 많은 도움이 되는데, 일본에서는 섬유/화학/금속/세 - 라믹 등 다양한 화학업종의 업체들이 IT 재료 사업 - 에 참여하고 있다. 다양한 IT 채료 분야 중에서도 현 - 재 가장 많은 일본 업체들이 참여하고 있는 분야가 - 평판디스플레이 분야이다. 이는, 기존에는 반도체 재 - 료분야제 가장 많은 업체들이 있었으나, 평판디스플 - 레이 시장의 급성장으로 인한 결과이며, 2005년경예 - 는 디스플레이 시장이 반도체시장규모를 넘어설 것 으로 예측한 결과이기도 하다. 특히 주목해야할 분야 - 가 광전자계품 관련 재료분야로, 아직은 시장 형성기 - 로 볼 수 있으나, 향후 광통신분야의 폭발적 성장에 - 대비하여 다양한 Optoelectronics용 재료들을 개발 - 및 시계품 출시를 하고 있다. 근거리 통신망에 채용 이 예상되는 POF (Plastic Optical Fiber)분야에서 - 는 Asahi, Mitsubishi Rayon, 광섬유 코팅재 부문 - 에서도 JSR이 시장우위를 유지하고 있다.

> 일본 화학업체중 반도체 패키지 재료인 EIMC분야 - 에서 세계 M/S 40%이상으로 세계 1위로 반도체 PR. Polyimide 및 광섬유고팅재 분야에서 괄목할 만한 ·성장을 하고 있는 Sumitomo Bakelite는 총매출액 대비 IT용 재료 매출비중이 51%에 이를 정도로 IT용 '재료사업을 육성하고 있으며, 연구개발투자도 총 연 구개발비 66억엔중 대부분을 IT용 재료에 투자하고 있다. JSR의 경우에는 총매출액 대비 전자재료 매출 비중이 21%에 이르며, 108억엔 수준의 연구개발비중 40%이상을 IT 재료분야에 투자하여 집중육성하고 있다.

엄동 업체 분야		설유/충착업체															고무/유리/시멘트									加工							
	0 1 At 81	우베	香港	오우화학	쇼와린데	주무현학	주우병이미라이비	시민	DI G	GI 이 진	전기화학	도시바	토소	내전증	도무하다	니본제요	히타지	민 원	25,50	미쓰비시가스	미쓰비시세이모	아 건하를 편스	JS R	스디토모오사짜	선민합을라스	해보라다리	일본가이시	노리다삤	호 야	요요하다니다	왕면진됐수	春日の女々	心中和巴西斯中
반도체 제품	0						_		П													0								×	2	1	-
반도체 FAB		b			0				Г			0	0	D	0	O		0	0	0		垃	0		0				o	×	14	7	1
번도체 Assen	0	0	0		0	0	0.	Г		Н	0	0		0	0	Н	0	0		0	0	古		Н	×		Δ	0		×	17	7	1
광전자 제공	0		0	0		0		П	0			0		0		0		Г	0	0	0	O	0	0	0	0	0		Ö		18	11	-
전지/전지소재	0	D	0	0		业		Г		П			ø.	À											Ü	☆					9	2	4
Data Storage					0			Г	Ø.	0			0	0		0		0	0			0				0	Ŕ		0		12	6	1
평판디스플레이		0	O			0		O	0	0		0	0	O	0	0	0	0.		女	0	0	0	0	台	☆		0	0		22	11	3
기타 전자제품		ņ			0		0				0											0		0			0.				7	3	1
기타 전자소재	П		0	0		0		Г	Г		0	0		Ð	0	0		0		Г	0	0		n	0			Г			13	6	1
세트제품								П	П					Ď.																×	1	1	
시스템	垃		1				1		0	Ö		0	0	D	0				0			15					0		1	×	9	3	1
참이분야 수	5	5	5	4	4	5	2	1	4	3	3	6	5	9	5	5	2	5	4	4	4	8	3	4	6	4	5	2	4	-			
확대분야 수	4	2	2	3	2	4	1	1	1	2	2	4	3	1	3	3		1	2	3	1	3	1	2		1	2	1	2	+			
신규칙이분야 수	1	-	-	1	-	1	-	-	100	-	-	-	-	1	-	-	-	-	-	1	-	2	100	1	1	2	2	-	-	-			

표 1, 일본 섬유/화학/금속/세라믹 언체들의 IT 재료 참여분야 분석표

6. 결 론

을 수립하여 만간 출연연구, 국제공동연구 등을 통 _ 을 가지는 IT 재료 산업으로 성장시킬 수 있을 것 해 핵심원천기술을 확보하고, 장기적 안목에서의 이다. 투자를 시행해야 한다. 또한 FT 재료 산업이 대기 의 협력구도를 재정립해야만 한다. 이미 선진 [T] 재료 업체들은 기술 선점의 우위를 유지하기 위하 - 생력 강화, 나아가서는 국가경쟁력 확보를 위해서 여 다양한 기술 Outsourcing 전략을 구사하고 있으... 라도 IT 재료산업의 육성은 반드시 필요한 것이다. 며, 사업확장을 위한 활발한 M&A가 이루어지고 IT 재료산업의 중요성 인식과 사업자의 의지, 그리 력한 의지를 가지고 국내 화학업계와의 공동개발 _ 발이지만 향후에 좋은 결실을 이루어 낼 수 있을 및 기술제휴를 해야한다.

국내 IT 산업은 중점추진사업분야 선정, 원천물

질특허 확보, 핵심원부재료의 국내기반확보, 국내 - 국내 IT 용 재료 산업의 육성을 위해서는 국가산 - 전자/정보통신업체의 체계적 기술협력 및 업체간의 업발전에 기여할 구체적 기술개발에 목표 및 전략 _ 수직계열화를 이룬다면 5년 이내에 세계적 경쟁력

우리의 TT 재료 산업은 이웃 일본에 비해 성장 업형으로 전환됨을 주시하고, 중소기업, 벤처기업간 _ 과정이나 계반조건에서 불리한 것이 사실이다. 그 - 러나 화학산업의 부흥, 그리고 FT 산업 전반의 경 있다. 그리고 국내 IT 업체들도 국산화에 대한 강 - 고 정책적인 뒷받침이 어우러진다면 비록 늦은 출 것이라 판단된다.