다양한 광석유를 이용한 유동세포 검출

정밀전자과 공업연구관 이상근 02) 509-7325 sglee@ats.go.kr 자본재과 공업연구관 박정우 02) 509-7272 phark@ats.go.kr

1. 서 론

광섬유를 통신에 응용하려는 노력이 있어왔다. 통 는 내시경과 압력, 온도 등의 모든 종류의 검출기에 사용되었다. 합성수지로 만든 광성유는 꽃 모양의 밝 - 호를 측정, 분석한다. 은 장식에도 사용되었다. 이 논문에서는 다양한 응용 품 중에서도 유통 세포를 검출하는데 사용되었다.

유동세포 측정기는 균일하게 흐르는 세포에 레이저 광을 인가하여 얼어지는 광학적 신호를 측정하는 사 스템이다. 세포 내부의 않은 생물학적인 현상은 실시 간으로 접근하여 측정되며, 생물학적인 성분과 구조 에 의해 세포가 분류된다. 따라서 의학, 생물학, 유전 **학 등과 같은 생명과학을 연구하는데 필수적인 장비** 임에 확실하다. 그러나 높은 비용, 큰 크기와 복잡한 메카니즘 때문에 이들 연구에 응용하는 것이 어렵다.

그러므로 우리는 광학적인 방법과 MEMS 기술을 함께 적용하여 유통세포 측정기를 소형화하였다. 초. 미세 유동세포 측정기를 광섬유와 유동세포를 이용하 여 계작하였다. 이 기기는 계작과 유지에 있어서 비용 이 적게 드는 것이 장점이다. 또한 많은 광학 렌즈와 값비싼 장비 대신에 광섬유로 교체했기 때문에 간단 - 광섬유라고 하며, 수십 아이크론 크기를 다중 모드 광 한 구조와 사용이 가능하다.

2. 계 작

- 계안한 시스템의 원리는 레이저 광이 초미세 노즐 신용으로 빚은 전파보다 많은 정보를 보낼 수 있다. - 에 인가된 후, 초미세 노즐의 광학적 출력 신호가 광 이는 전파보다 빛의 주파수가 높기 때문이다. 광섬유 - 섬유에 의해 전자회로로 전송되는 것이다. AD 변환 - 후 설계, 계작된 실시간 자료 입수 시스템에 위해 신

2.1 광섬유

광섬유는 코어, 클래딩과 코팅으로 이루어진다. 코 어는 섬유의 중심에 있고, 광학적 신호의 전파매질이 되며, 굴절률이 높은 실리카 유리 또는 플라스틱으로 만들어진다. 전행적인 코어의 크기는 단일 모드의 실 리카 유리 코어의 경우 8 세페에서 다중모드의 플라스 틱 광성유의 경우 1000 zm.까지 된다. 코어를 감싸고 있는 클래딩은 굴절률이 낮은 재료로 한다. 코어와 클 래딩 경계에서의 굴절률의 차이가 거울을 형성하게 된다. 클래덩은 더 낮은 굴절률로 인해 빛을 광도파로 (optical wave guide)를 청성하는 코어 중심으로 반 사한다. 중 코어의 굴절율은 클래딩의 굴절율보다 높 기 때문에 빛은 코어에 모이게 되고, 누설 없이 진행 된다. 코어 크기가 수 마이크론인 광섬유를 단일 모드 섬유라고 한다. 단일 모드의 경우, 광섬유들 중에서 손실은 작지만 정렬하기가 힘들다. 그래서 장거리 송

신 및 대용량 통신에 사용된다. 단거리 송신에 사용되 - 미세 노즐에 주입하면서, 출력전력을 측정하였다. 표 는 다중 모드는 유통 세포를 검출하는데 적합하다. 왜 - 1은 이 결과를 나타낸 것이다. 직경이 125 #m인 광섬 냐하면 코어의 크기가 수십 마이크론이기 때문에 출 - 유를 사용했다. 사용된 8.3 /皿 크기의 단일 모드로는 력신호 또한 크기 때문이다. 따라서 저출력 광원을 쓸 그고 전력의 광원조차 정렬하기 어려웠다. 그러나 크기 수 있으며, 소형화하기에 적합하다.

22제 작

광섬유와 초미세 노즐사이를 정렬하기 위해서 MEMS 기술로 가이드 채널이 실리콘 웨이퍼(100)에 만들어졌다. 실리콘 웨이퍼는 TMAH으로 해칭되었 다. (20,0 wt%, 90°C, 예정 속도 0,97 /m/min) 의부 충격과 노즐과 광성유간의 비정렬로 부터 보호하기 위해서, 파이렉스 유리와 가이드 채널이 만들어진 실 리콘 쉐이퍼를 양국 접합(1000 VDC 400 °C) 하였 다. 가이드 채널위에 광섬유와 초미세 노즐이 정렬하 였다

광성유의 출력을 통하여 광학적 작은 신호를 검출. 하기 위해서, 포토 다이오드(S2396-8K)가 달린 신호 처리 회로를 설계하고 만들었으며, 비교 측정기 (LM311)가 있는 세포 계수 회로를 만들었다. 전기회 로의 출력신호를 처리하기 위해서 데이터 수집 시스 템(DagBook/100)와 개인용 컴퓨터를 사용하였으며, 광량의 변화를 효과적으로 측정하기 위해서 디지털 오실로스코프 (LeCroy LC534A)를 사용하였다. 세포 계수기의 출력을 관찰하기 위한 프로그램을 Visual Basic 6,0으로 만들었다.

3. 실험 및 결과

가장 적합한 모드를 찾기 위해, 단일모드와 다중 모드의 광섬유로 이루어진 출력부의 광량을 측정하였 다. 페놀 레드 스테인이 들어있는 Huvec 세포를 초

가 62.5 ㎞인 다중모드는 정렬하는 것이 쉬웠고, 광 섬유를 통한 광 출력 전력 역시 매우 컸다.

그러므로 입출력 모두 단일 모드일 경우, 유동 세 쪼를 검출할 수 없었다. 반면 입력만 단일 모드이고 출력은 다중모드인 경우에는 검출이 가능했지만 정렬 - 시키는 것이 어렵고 출력 전압이 80 ㎡로 매우 낮았 - 다. 입출력 모두 다중 모드일 경우 정렬하기 쉬웠다. 세포 검출 감도는 다른 경우처럼 나쁘지는 않았다. 출 력 전압이 약 300 ㎡로 높았기 때문에 출력 전력이 비교적 작은 광원으로 교체할 수 있다. 그러므로 레이 저 다이오드를 사용할 수 있고 소형화하기에 적합하 다. 단일-다중 모드를 사용해서 사람의 T 세포 전압 특성을 나타낸다.

- 다중-다중 모드를 이용하여 줘의 T 세포에 관한 결과를 보면, 각각 다른 젤룰로우스와 세포벽으로 이 - 루어진 세포에 대해 빛의 투자율이 다르기 때문에 전 - 압 특성도 다르다. 또한 세포의 상대적인 크기도 알았 - 다. 다중-다중 모드를 사용한 취의 T 세포의 측정 결 - 파를 나타낸 것이다. 중 단일-다중 모드와 다중-다중 모드의 측정은 같은 조건 하에서 동시에 측정된 것이 다. 그러나 다중-다중 모드의 펄스 폭은 단일-다중 모드의 펄스 폭의 5배가 되었다. 즉, 다중-다중 모드 의 세포 크기는 단일-다중 모드의 세포 크기의 5 배 였다. 계작된 시스템에 취의 T 세포(EL-4)를 6×105/ ml 주입하여 8 분 34초 동안 23,000의 세포를 검출할 - 수 있었다. 평균 계수 속도는 45 세포/sec 이다.

Table 1
Relation of between optical fibers and output power

Inpu fibe		Output fiber	Detection	Output Power
sing	le	single	impossible	
sing	le	multi	possible	0,2 µW
mul	ti	single	possible	Wn 80,0
mul	ti	multi	possible	0.12 nW

4 결혼

이 실험에서 우리는 효과적인 유동세포 검출에 적합한 광성유를 선택하기 위해 다양한 광성유를 시험해 보았다. 초미세 노출과 광성유 사이를 정렬시키기위한 가이드 채널을 MEMS 기술로 실리콘 웨이퍼(100)를 예칭시키므로 제작하였다. 이 제작된 시스템은 낮은 비용과 단순한 구조가 장점인데, 이는 많은 광학 렌즈와 값비싼 장비를 광성유로 대체했기 때문이다. 다양한 성유 모드를 이용한 세포 검출 결과에서는, 입출력 모두 다중 모드로 할 경우 정렬하기가 쉬었다. 세포 검출감도는 다른 경우와 같이 나쁘지 않았다. 출력 전압은 약 300 때 로 높으므로, 저전력 광원을 사용할 계획이며, 이것은 소형화에도 적합한 조건이다.

우리는 다양한 세포를 주입함으로서 세포를 검출할 수 있었다. 전압 특성이 다양한 이유는 특정 셀롤로운 스와 세포벽으로 이루어진 세포에 대한 빛의 투자율이 다르기 때문이었다. 또한 우리는 주입된 세포의 상대적인 크기도 비교할 수 있었다.

그러므로 우리는 일반적인 유동세포 측정기의 소형 화 가능성을 확인하였다. 이것은 MEMS 기술에 의해 저비용의 대량 생산을 가능케 한다. 또한 우리는 많은 종류의 세포를 중에서 특정 세포만 분류하는데 이 시 스템을 응용할 수 있었다. 이러한 시스템이 초소형 유 동세포 계수기에 응용될 수 있다.

후기

본 연구는 산업자원부가 지원하고 있는 차세대 신기술 개발 사업 중 한국기계연구원이 주관하고 있는 고기능 초미세 광열유체 마이크로부품 기술개발 사업의 세부과제로서 수행중이며 이에 관계자 여러분들께 감사의 말씀을 올립니다.

4