Abstract
In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two identical rectangular plates coupled with fluid. A commercial computer code, ANSYS was used to perform finite element analysis and FEM solutions were compared with the experimental results to verify the finite element model. As a result, comparison of FEM and experiment showed good agreement, and the transverse vibration modes, in-phase and out-of-Phase, were observed alternately in the fluid-coupled system. The effect of fluid gap size on the fluid-coupled natural frequency were investigated. It was shown that the mode numbers increased, the normalized natural frequencies monotonically increased. And it was also found that an increase of the fluid gap reduced the coupled natural frequencies for the in-phase modes but increased the coupled natural frequencies for the out-of phase modes, and eventually converged to the results of an infinite fluid gap.