Production of Arachidonic Acid by Mortierella Fungi

  • Higashiyama, Kenichi (Institute for Fundamental Research, Suntory Limited) ;
  • Fujikawa, Shigeaki (Institute for Fundamental Research, Suntory Limited) ;
  • Park, Enoch Y. (Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University) ;
  • Shimizu , Sakazu (Division of Applied Life Science, Graduate School of Agriculture Sciences, Kyoto University)
  • Published : 2002.09.01

Abstract

The growing interest in the application of arachidonic acid (ARA) in various fields of health and dietary requirements has elicited much attention on the industrial production of ARA-containing oil by the cultivation of Mortierella fungi. For the industrial production of ARA, various studies, such as isolation of a high-potential strain and optimization of culture conditions, have been conducted. Studies including the investigation of morphology are important because ARA is accumulated in the mycelia, and thus cultivation with high biomass concentration is essential for obtaining a high ARA yield. Combining the results derived from various studies, a high ARA yield was attained in an industrial fermentor. These ARA production techniques are applicable to the production of other polyunsaturated fatty acids (PUFAs), and will contribute to the improvement of fermentation technology especially in the field of fungal cultivation.

Keywords

References

  1. Industrial Applications of Single Cell Oils Microbial lipids: Commercial realities or academic curiosities Ratledge, C.
  2. J. Ferment. Technol. v.61 Mass production of lipids by Lipmyces starkeyi in microcomputer-aides fed-batch culture Ymauchi, H.;H. Mori;T. Kobayashi;S. Shimizu
  3. J. Jpn. Oli Chem. Soc v.30 Studies on production of lipids in fungi (II): Lipid compositions of six species of Mucorales in Zygomycetes Suzuk, O.;T. Yokochi;T. Yamashina https://doi.org/10.5650/jos1956.30.863
  4. J. Biosci. Bioeng v.87 Biosynthesis and regulation of microbial polyunsaturated fatty acid production Certik, M.;S. Shimizu https://doi.org/10.1016/S1389-1723(99)80001-2
  5. Trends Biotechnol v.15 Polyunsaturated fatty acid, part 1: occurrence, biological activities and applications Gill, I.;R. Valivety https://doi.org/10.1016/S0167-7799(97)01076-7
  6. J. Lab. Clin. Med. v.100 Arachidonic acid protection of rat gastric mucosa against ethanol injury Hollander, D.;A. Tarnawski;K. J. Ivey;A. Dezeery;R. D. Zipser;W. N. Mckenzie;W. D. Mcfarland
  7. Prostaglandins v.38 In vivo assessment of precursor induced prostaglandin release within the rat gastric lumen Doyle, M. J.;P. R. Nemeth;M. L. Skoglund;K. G. Mandel https://doi.org/10.1016/0090-6980(89)90151-2
  8. Arch. Dermatol v.124 Action of topopically applied arachidonic acid on the skin of patients with psoriasis Hebborn, P.;S. Jablonska;E. H. Beutner;A. Langer;H. Wolska
  9. Lipids v.15 Dietary arachidonic acid reduces fatty liver, increases diet consumption with psoriasis Goheen, S. C.;E. C. Larkin;M. Manix;G. A. Rao https://doi.org/10.1007/BF02533548
  10. Cancer Res. v.51 Lipid peroxidation in rat AH-130 hepatoma cells enriched in vivo with arachidonic acid Canuto, R. A.;G. Muzio;M. E. Biocca;M. U. Dian-zani
  11. Advances in Polyun-saturated Fatty acid Research Improvement of Polyunsaturated Fatty Acid deficiency in decompensated cirrhotic patients by arachidonic acid-rich oil capsules Okita, M.;A. Miyamoto;Y. Wakabayashi;A. Watanabe;T. Yasugi(ed.);H. Nakamura(ed.);M. Soma(ed.)
  12. Science v.258 Isolation and structure of a brain constituent that binds to the cannabinoid re-ceptor Devane, W. A.;L. Hanus;A. Breuer;R. G. Pertwee;L. A. Stevenson;G. Griffin;D. Gibson;A. Mandelbaum;A. Et-inger;R. Mechoulam https://doi.org/10.1126/science.1470919
  13. Nature v.388 A second endogenous cannabinoid that modulates long-term potential Stella, N.;P. Schweitzer;D. Piomelli https://doi.org/10.1038/42015
  14. Proc. Natl. Acad. Sci. USA v.90 Arachidonic acid status correlates with first year growth in preterm infants Carlson, S. E.;S. H. Werkman;J. M. Peeples;R. J. Cooke https://doi.org/10.1073/pnas.90.3.1073
  15. Advances in Poly-unsaturated Fatty Acid Research The effect of marine oil-supplemented formulas without ei-cosapentaenoic acid on the n-3 Carlson, S. E.;S. H. Werkman;J. M. Peeples;R. J. Cooke;W. W. K. Koo;E. A. Tolley;T. Ya-sugi(ed.);H. Nakamura(ed.);M. Soma(ed.)
  16. Lancet v.344 Neurological defferences between 9-year-old children fed breast-milk or formula-milk as babies Lanting, C. I.;V. Fidler;M. Huisman;B. C. L. Touwen;E. R. Boersma https://doi.org/10.1016/S0140-6736(94)90692-0
  17. Pediatrics v.108 Growth and development in preterm infants fed long-chain poly-unsaturated fatty acids;A prospective, randomized con-trolled trial O'Conner, D. L.;R. Hall;D. Adamkin;N. Austad;M. Castillo;W. E. Conner;S. J. Conner;K. Fitzgerald;S. G. Wargo;E.E. Hartmann;J. Jacobs;J. Janowsky;A. Lucas;D. Margeson;P. Mena;M. Neuringe;M. Nesin;L. Singer;T. Stephenson;J. Szabo;V. Zemon https://doi.org/10.1542/peds.108.2.359
  18. Develop. Med. Child Neurol v.42 A randomized controlled trial of early dietary supply for long-chain polyunsaturated fatty acids and mental development in term infants Birch, E. E.;S. Garfield;D. R. Hoffman;R. Uauy;D. G. Birch https://doi.org/10.1017/S0012162200000311
  19. Abstracts of 88th AOCS Annual Meeting Enhancement of arachidonic acid production by Mortierella alpina Higashiyama, K.;T. Yaguchi;K. Akimoto;S. Fujikawa;S. Shimizu
  20. Appl. Microbiol. Biotechnol v.48 Production of high yields of arachidonic acid in a fed-batch system by Mortierella alpina ATCC32222 Singh, A.;O. P. Ward https://doi.org/10.1007/s002530051005
  21. Industrial Applica-tions of Single Cell Oils Industrial production of arachidonic acid by Mortierella Totani, N.;K. Someya;K. Oba;D. J. Kyle(ed.);C. Ratledge(ed.)
  22. Can. J. Chem. Eng. v.73 Process for production of arachidonic acid concentrate by a strain of Mortierella alpina Li, Z. Y.;Y. Lu;V. B. Yadward;O. P. Ward https://doi.org/10.1002/cjce.5450730115
  23. Process Biochem v.35 Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis Eroshin, V. K.;A. D. Satroutdinov;E. G. Dedyukhina;T. I. Christyakova https://doi.org/10.1016/S0032-9592(00)00151-5
  24. PCT Patent WO96/21037 Arachidonic acid and methods for the production and use thereof Kyle, D. J.
  25. J. Am. Oil. Chem. Soc v.74 Opti-mization of arachidonic acid production by Mortierella alpina Wuji-H14 isolate Chen, H. C.;C. C. Chang;C. X. Chen https://doi.org/10.1007/s11746-997-0182-1
  26. Abstracts of 5th Asia Pacific Biochemical Engineering Confer-ence Production of arachidonic acid by Mortierella alpina DSA -12 Park, C.-Y.;S.-J. Ha;C. Kim;Y.-W. Ryu
  27. Appl. Microbiol. Biotechnol v.39 Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by fungus Mortierella alpina CBS343.66 in fermentor cultures Lindberg, A. M.;G. Molin https://doi.org/10.1007/BF00205031
  28. J. Am. Oil Chem. Soc v.78 Production of arachidonic by filamentous fungus, Mortierella alliacea strain YN-15 Aki, T.;Y. Nagahata;K. Ishihara;Y. Tanaka;T. Morinaga;K. Higashiyama;K. Akimoto;S. Fujikawa;S. Kawamoto;S. Shigeta;K. Ono;O. Suzuki https://doi.org/10.1007/s11746-001-0311-2
  29. Japanese Patent H8-214893 Method for arachidonic acid Production Berkeley, W.
  30. Biotechnol. Lett v.12 Arachidonic Acid Production by Mortierella SP. S-17 Sajbidor J.;S. Dobronova;M. Certik https://doi.org/10.1007/BF01024404
  31. J. Am. Oil Chem. Soc v.75 Effect of mustard meal on the production of arachidonic acid by Mortierella elongata SC-208 Chaudhuri, S.;S. Ghosh;D. K. Bhattacharya;S. Bandyopadhyay https://doi.org/10.1007/s11746-998-0286-2
  32. Bioresource Technol v.67 Fungal production of eicosaentaenoic acid and arachidonic acid from industrial waste streams and crude soybean oil Cheng, M. H.;T. H. Walker;G. J. Hulbert;D. R. Raman https://doi.org/10.1016/S0960-8524(98)00113-8
  33. J. Jpn. Oil Chem. Soc v.36 An improed method of arachidonic acid production by Mortierella alpina Totani, N.;A. Watanbe;K. Oba https://doi.org/10.5650/jos1956.36.328
  34. W.J. Microbiol. Biotechnol v.9 Arachidonic acid production by Mortierella alpina grown on solid substrates Stredanska, S.;D. Slugen;M. Stredansky;J. Grego https://doi.org/10.1007/BF00386285
  35. Mycotaxon v.94 Chemotaxonomic significance of fatty acid composition in the genus Mortierella (Zygomycetes, Mortierellaaceae) Amano, N.;Y. Shinmen;K. Akimoto;H. Kawashima;T. Amachi;S. Shimizu;H. Yamada
  36. Food Chem. Toxicol v.35 Preliminary safety assessment of an arachidonic acid-enriched oil derived from Mortierella alpina: summary of toxicological data Hempenius, R. A.;J. M. Van-Delft;M. Prinsen;B. A. Lina https://doi.org/10.1016/S0278-6915(97)00025-2
  37. Lipids v.32 High levels of dietary arachidonic acid triglyceride exhibit no subchronic toxicity in rats Koskelo, E. K.;K. Boswell;I. Carl;S. Lanoue;C. Kelly;D. Kyle https://doi.org/10.1007/s11745-997-0051-y
  38. J. Biotechnol v.56 On the safety of Mortierella alpina for the production of food ingredient, such as arachidonic acid Streekstra, H. https://doi.org/10.1016/S0168-1656(97)00109-0
  39. Food Chem. Toxicol v.37 Evaluation of single-cell sources of docosahexaenoic acid and arachidonic acid: 3-month rat oral safety study with an in utero phase Burns, R.A.,;G.J. Wibert;D.A. Diersen-Schade;C.M. Kelly https://doi.org/10.1016/S0278-6915(98)00104-5
  40. Process Biochem v.8 Fungal pelleting Whitaker, A.;P.A. Long
  41. Process Biochem v.18 Problems of mass transfer and momentum transfer in large fermenters Vardar, F.
  42. Can. J. Microbiol v.8 Submerged citric acid fermentation of ferrocyanide treated beet molasses: morphology of pellets of Aspergillus niger Clark, D. S. https://doi.org/10.1139/m62-017
  43. Adv. Biochem. Eng v.11 The rheology of mold suspensions Metz, B.;N. W. Kossen;J. C. Van Suizdum
  44. J. Ferment. Bieng v.76 Morphology control of preculture during production of ML-236B, a precursor of pravastatin sodium, by Penicillium Hosobuchi, M.;F. Fukui;H. Matsukawa;T. Suzuki;H. Yoshikawa https://doi.org/10.1016/0922-338X(93)90244-3
  45. Biotechnol. Bioeng v.35 The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum Smith, J. J.;M. D. Lilly;R. I. Fox https://doi.org/10.1002/bit.260351009
  46. Biotechnol. Bioeng v.33 Effect of nutrition on pellet formation by Rhizopus arrhizus Byrne, G. S.;O. P. Ward https://doi.org/10.1002/bit.260330715
  47. Process Biochem v.11 Starting investigational and production cultures Calam, C. T.
  48. Enzyme Microbiol. Technol v.16 Physiological optimation of secreted protein production by Aspergillus niger Mackenzie, D. A.;L. C. G. Gendron;D. J. Jeenes;D. B. Archer https://doi.org/10.1016/0141-0229(94)90166-X
  49. Appl. Microbiol. Biotechnol v.31 Production of arachidonic acid by Mortierella fungi;selection of a pontent producer and optimization of culture conditions for large-scale production Shinmen, Y.;S. Shimizu;K. Akimoto;H. Kawashima;H. Yamada
  50. J. Am. Oil Chem. Soc. v.75 Enhancement of arachidonic acid production by Mortierella alpina 1S-4 Higashiyama, K.;T. Yaguchi;K. Akimoto;S. Fujikawa;S. Shimizu https://doi.org/10.1007/s11746-998-0085-9
  51. J. Biosci. Bioeng v.88 Effect of nitrogen source on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina Park, E. Y.;Y. Koike;K. Higashiyama;S. Fujikawa;M. Okabe https://doi.org/10.1016/S1389-1723(99)80177-7
  52. J. Jpn. Oil Chem. Soc. v.49 A study on new nitrogen source for cultivation of genus Mortierella Totani, N.;K. Hyodo;T. Ueda https://doi.org/10.5650/jos1996.49.479
  53. J. Biosci. Bioeng v.91 Effect of consumed carbon to nitrogen ratio on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina Koike, Y.;H. J. Cai;K. Higashiyama;S. Fujikawa;E. Y. Park https://doi.org/10.1263/jbb.91.382
  54. Biotechnol. Bioprocess Eng. v.6 Morphological diversity of Mortierella alpina;effect of consumed carbon to nitrogen ratio in flask culture Park, E. Y.;Y. Koike;H. J. Cai;K. Higashiyama;S. Fujikawa https://doi.org/10.1007/BF02932544
  55. Biochemical Engineering (2nd ed.) Aiba, S.;A. E. Humphrey;N. E. Ueda
  56. J. Jpn. Oil Chem. Soc. v.49 Minerals essential for grwth of the filamentous fungus Tonani, N.;K. Hyodo;T. Udeda https://doi.org/10.5650/jos1996.49.487
  57. Folia Microbiol v.37 Influ-ence of some metal ions on the lipid content and arachidonic acid production by Mortierella sp Sajbidor, J.;D. Kozelouhova;M. Certik https://doi.org/10.1007/BF02899897
  58. J. Biol. Chem. v.249 Acetyl-CoA carboxylase system of E. coli: Purification and properties of the biotin protein carboxylase, carboxytransferase and carboxyl carrier protein components Guchhait, R. H.;S. E. Polakis;P. Dimroth;E. Stoll;J. Moss;M. D. Lane
  59. Trend Biotechnol v.9 Mycelial morphology and metabolite production Braun, S.;S. E. Vecht-Lifshitz https://doi.org/10.1016/0167-7799(91)90191-J
  60. Biotechnol. Bioeng v.55 Enhancement of L(+)-lactic acid production using mycelial flocs of Rhizopus oryzae Kosakai, Y.;Y. S. Park;M. Okabe https://doi.org/10.1002/(SICI)1097-0290(19970805)55:3<461::AID-BIT1>3.0.CO;2-A
  61. J. Am. Soc. Brew. Chem. v.53 Effect of physiological stress on the surface properties of brewing yeasts Smart, K. A.;C. A. Boulton;E. Hinchliffe;S. Molzahn
  62. J. Am. Oil. Chem. Soc. v.75 Effects of mineral addition on the growth morphology of and arachidonic acid production by Mortierella alpina 1S-4 Higashiyama, K.;T. Yaguchi;K. Akimoto;S. Fujikawa;S. Shimizu https://doi.org/10.1007/s11746-998-0336-9
  63. App. Microbiol. Biotechnol v.33 The effect of low oxygen uptake rate on the fatty acid profile of the oleaginous yeast Apiotrichum curvatum Davies, R. J.;J. E. Holdsworth;S. L. Reader
  64. FEBS Lett v.425 Oxygen induces fatty acid (n-6)-desatu-ration independently of temperature in Acanthamoeba castellanii Thomas, K.;A. Rutter;M. Suller;J. Harwood;D. LIoyd https://doi.org/10.1016/S0014-5793(98)00218-X
  65. Appl. Microbiol. Biotechnol v.37 Lipid formation in oleaginous mold Entomophthora exitalis growth in continuous culture;effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids Kendrick, A.;C. Ratledge
  66. Industrial Applications of Single Cell Oils Gamma-linolenic acid from genus Mortierella Nakahara, T.;T. Yokochi;Y. Kamisaka;O. Suzuki;D.J. Kyle(ed.);C. Ratledge(ed.)
  67. W.J. Microbiol. Biotechnol v.13 The effect of acetic acid concentration on the growth and production of gamma-linolenic acid by Mucor circinellodes CBS203.28 in fed-batch culture Du Preez J. C.;M. Immelman;J. L. F. Kock;S. G. Killian https://doi.org/10.1007/BF02770812
  68. Appl. Microbiol. Biotechnol. v.31 Production of γ-linolenic acid by fungus Mucor rouxii in fedbatch and continuous culture Hansson, L.;M. Dostalek;B. Sorenby
  69. Process Biochem v.32 Lipid and γ-linolenic acid pro-duction by Mucor inaquisporus Emelyanova, E. V. https://doi.org/10.1016/S0032-9592(96)00051-9
  70. J. Ferment. Bioeng v.83 Application of $Maxblend^?$ fermentor for microbial process Hiruta, O.;K. Yamamura;H. Takebe;T. Futamura;K. linuma;H. Tanaka https://doi.org/10.1016/S0922-338X(97)87331-X
  71. J. Am. Oil. Chem. Soc. v.65 Production of eicosapentaenoic acid by Mortierella fungi Shimizu S.;H. Kawashima;Y. Shinmen;K. Akimoto;H. Yamada https://doi.org/10.1007/BF02898307
  72. Biotechnol. Bioeng v.63 Effects of dissolved oxygen on the morphology of an arachidonic acid pro-duction by Mortierella alpina 1S-4 Higashiyama, K.;K. Murakami;H. Tsujimura;N. Matsumoto;S. Fujikawa https://doi.org/10.1002/(SICI)1097-0290(19990520)63:4<442::AID-BIT7>3.0.CO;2-9
  73. Biotechnol. Prog v.14 Sake flask to fermentor;what have we learned Humphrey, A.
  74. J. Ferment. Bioeng v.82 Optimization and scale-up of γ-linolenic acid production by Mortierella ramanniana MM 15-1, a high γ-linolenic acid producing mutant Hiruta, O.;T. Futamura;O. Suzuki https://doi.org/10.1016/0922-338X(96)89152-5
  75. J. Ferment. Bioeng v.77 Scaleup of peroxidase production by Arthromyces ramosus based on analysis of fluid velocity distribution Tsujimura, H.;M. Takaya;K. Katano;N. Matsumoto;Y. S. Park;M. Okabe https://doi.org/10.1016/0922-338X(94)90148-1
  76. Biosci. Industry v.52 Scale-up of mycelial fermentation based on analysis of fluid velocity distribution Tsujimura, H.;N. Matsumoto
  77. J. Biosci. Bioeng v.87 Image analysis of morphological change during arachidonic acid production by Mortierella alpina 1S-4 Higashiyama, K.;S. Fujikawa;E. Y. Park;M. Okabe https://doi.org/10.1016/S1389-1723(99)80098-X
  78. J Am. Oil. Chem. Soc v.66 Production of dihomo-γ-linolenic acid by M. alpina 1S-4 Shimizu, S.;K. Akimoto;H. Kawashima;Y. Shinmen;H. Yamada https://doi.org/10.1007/BF02546067
  79. Lipids v.26 Sesamine ia a potent and specific inhibitor of Δ5 desaturase in polyunsaturated fatty acid biosystheis Shimizu, S.;K. Akimoto;Y. Shinmen;H. Kawashima;M. Sugano;H. Yamada https://doi.org/10.1007/BF02536595
  80. Lipids v.27 Inhibitory effect of cur-cumin on the fatty acid desaturation im M. alpina 1S-4 and rat liver microsomes Shimizu, S.;S. Jareonkitmongkol;H. Kawashima;K. Akimoto;H. Yamada https://doi.org/10.1007/BF02536132
  81. Trend. Biotechnol v.16 Desaturase-defective fungal mutants;useful tools for the regulation and overproduction of polyunsaturated fatty acids Certik, M.;E. Sakuradani;S. Shimizu https://doi.org/10.1016/S0167-7799(98)01244-X
  82. J. Am. Oil Chem. Soc. v.77 Industrial production of dihomo-γ-linolenic acid by a Δ5 desaturase-defective mu-tant of Mortierella alpina 1S-4 fungus. Kawashima, H.;K. Akimoto;K. Higashiyama;S. Fuji-kawa;S. Shimizu https://doi.org/10.1007/s11746-000-0178-2
  83. Appl. Environ. Microbiol v.63 Production of 5,8,11-eicosatrienoic acid (Mead acid) by a Δ6 desaturation activity-enhanced mutant derived from a Δ12 desaturase-defective mutant of an arachidonic acid producing fungus, Mortierella alpina 1S-4 Kawashima, H.;M. Nishihara;Y. Hirano;N. Kamada;K. Akimoto;K. Konishi;S. Shimizu
  84. J. Am. Oil Chem. Soc v.76 Production of 8,11-cis-eicosadienoic acid by a Δ5 and Δ12 desaturase-defective mutant derived from tha arachidonic acid -producing fugus Mortierella alpina 1S-4 Kamada, N.;H. Kawashima;E. Sakuradani;K. Akimoto;J. Ogawa;S. Shimizu https://doi.org/10.1007/s11746-999-0138-8
  85. J. Am. Oil Chem. Soc v.75 Production of 8,11,14,17-cis-eicosatetraenoic acid by a Δ5 and Δ12 desaturase-defective mutant of an arachidonic acidproducing fungus Mortierella alpina 1S-4 Kawashima, H.;E. Sakuradani;N. Kamada;K. Akimoto;K. Konishi;J. Ogawa;S. Shimizu https://doi.org/10.1007/s11746-998-0084-x
  86. Trend Biotechnol v.10 Image analysis;putting filamentous microorganisms in the picture Thomas, C. R. https://doi.org/10.1016/0167-7799(92)90266-X
  87. Recent Res. Devel. Biotechnol. Bioeng v.1 Application of image analysis for efficient cultivation of microorgnisms Park, E. Y.
  88. J. Biosci. Bioeng v.84 Mycelial pellet intrastructure visualization and viability prediction in a culture of Streptomyces fradiae using confocal scanning laser microscopy Park, E. Y.;S. Tamura;Y. Toriyama;M. Okabe
  89. Biotecnol. Bioeng v.28 Investigation of oxygen transfer into Penicillum chrysogenum pellets by microprobe measurement Wittler, R.;H. Baumgartl;D. W. Lubbers;K. Schugerl https://doi.org/10.1002/bit.260280713
  90. Appl. Microbiol. Biotechnol v.56 Mycelial pellet intrastructure and visulization of mycelia and intracellular lipid in a culture of Mortierella alpina Hamanaka, T.;K. Higashiyama;S. Fujikawa;E. Y. Park https://doi.org/10.1007/s002530100649
  91. J. Cell Biol v.100 Nile red;a selective fluorescent strain for intracellular lipid droplets Greenspan, P.;E. P. Mayer;S. D. Fowler https://doi.org/10.1083/jcb.100.3.965
  92. Adv. Biol. Med Phys v.5 Electrical properties of tissue and cell suspensions Schwan, H. P.
  93. Handbook on Ultrasonic and Dielectric Characterization Techniques for Suspended Particulates Dielectric relaxation spectroscopy of biological cell suspensions Asami, K.;V. A. Hackley(ed.);J. Texter(ed.)
  94. Bioprocess Eng v.11 Dielectric measurement to monitor the growth and the physiological states of biological cells Matanguihan, R. M. ;K. B. Konstantinov;T. Yoshida https://doi.org/10.1007/BF00387695
  95. J. Biotechnol v.69 Online monitoring of fungal cell concetration by dielectric spectroscopy Krairak, S.;K. Yamamura;M. Nakajima;H. Shimizu;S. Shioya https://doi.org/10.1016/S0168-1656(99)00008-5
  96. Biotechnol. Bioeng v.65 Dielectric analysis for estimation of oil content in the mycelia of Mortierella alpina Higashiyama, K.;T. Sugimoto;T. Yonezawa;S. Fujikawa;K. Asami https://doi.org/10.1002/(SICI)1097-0290(19991205)65:5<537::AID-BIT6>3.0.CO;2-O