참고문헌
- J. Bacteriol v.149 Accumulation of poly-β-hydroxybutyrate in Spirulina plantensis Campbell, J. III.;S. E. Stevens Jr.;D. L. Balkwill
- FEMS Microbiol. Rev v.103 Poly(hydroxyalkanoate) in cyanobacteria: an overview Stal, L. J. https://doi.org/10.1111/j.1574-6968.1992.tb05835.x
- Biotechnol. Lett. v.23 Production of poly-β-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions Nishioka, M.;K. Nakai;M. Miyake;Y. Asada;M. Taya https://doi.org/10.1023/A:1010551614648
- J. Ferment. Bioeng v.82 A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-β-hydroxybutyrate Miyake, M.;M. Erata;Y. Asada https://doi.org/10.1016/S0922-338X(97)86995-4
- Biotechnol. Bioeng v.21 Identification of metabolic model: citrate production from glucose by Canadia lipolytica Aiba, S.;M. Matsuoka https://doi.org/10.1002/bit.260210806
- Biotechnol. Bioeng v.41 Metabolic flux distribution in Corynebacterium glutamicum during growth and lysine overproduction Vallino, J. J.;G. Stephanopoulus https://doi.org/10.1002/bit.260410606
- J. Ferment. Bioeng v.84 Metabolic flux analysis of poly-(β-hydroxybutyric acid) in Alcaligenes eutrophus from various carbon sources Shi, H.;M. Shiraishi;K. Shimizu https://doi.org/10.1016/S0922-338X(97)81915-0
- Biotechnol. Bioeng v.55 An online physiological state recognition system for the lysine fermentation process based on a metabolic reaction model Takiguchi, N.;H. Shimizu;S. Shioya https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<170::AID-BIT18>3.0.CO;2-Q
- Biochem. Eng. J. v.2 Microaerobic lysine fermentation and metabolic flux analysis Hua, Q.;P. C. Fu;C. Yang;K. Shimizu https://doi.org/10.1016/S1369-703X(98)00020-5
- Biochem. Eng. J. v.6 Energetics and carbon metabolism during growth of microalgal cells un-der photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions Yang, C.;Q. Hua;K. Shimizu https://doi.org/10.1016/S1369-703X(00)00080-2
- J. Biosci. Bioeng. v.93 Quantitative analysis of intracellular metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy Yang, C.;Q. Hua;K. Shimizu https://doi.org/10.1016/S1389-1723(02)80058-5
- J. Gen. Microbiol v.111 Genetic assignments, strain histories and properties of pure cultures of cyanobacteria Rippka, R.;J. Deruelles;J. B. Waterbury;M. Herdman;R. Y. Stanier https://doi.org/10.1099/00221287-111-1-1
- J. Chem. Eng. Jpn v.30 Growth estimation of Spirulina plantensis by considering light distribution in photoautotrophic batch culture Hirata, S.;J. Hata;M. Taya;S. Tone https://doi.org/10.1252/jcej.30.355
- Biochem. Eng. J. v.6 Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells, Marchantia polymorpha Hata, J.;Q. Hua;C. Yang;K. Shimizu;M. Taya https://doi.org/10.1016/S1369-703X(00)00076-0
- Frontiers in Bioprocessing Flux deter-mination in cellular bioreaction networks;application to lysine fermentation Vallino, J. J.;G. Stephanopoulos;S. K. Sikdar(ed.);M. Bier(ed.);P. Todd(ed.)
- The Biochemistry of Plants v.2 Stumpf, P. K.;E. E. Conn
- Curr. Topics Cell. Reg v.28 The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiencies of conversion to biomass, andexcretion of acetate Holms, W. H.
- Growth of the Bacterial Cell Ingraham, J. L.;O. Maaloe;F. C. Nedhardt
- Biochemistry Rawn, J. D.