몰폴로지신호처리(Morphological Signal Processing)기술

  • 김운경 (고려대학교 정보통신대학 전파통신공학과)
  • Published : 2002.12.01

Abstract

Keywords

References

  1. G.Matheron. Random SetsandIntegral Geometry. [M8] R.M.Haralick, S.R. Sterberg, X.Zhuang, 'Image Wiley, Frrst Edition, 1974. Analysis Using Mathematical Morphology', IEEE
  2. Jean Serra. Image Analysis and Mathematical Transactions on Pattern Analysis and Machine Morphology, volume 1.St. Edmundsbury press Limited, Bury St. Edmunds, Suffolk, 3rdedition, 1989
  3. P. Maragos. A Representation Theory for Morphological Image and Signal Processing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):586-599, June 1989
  4. P. Maragos R.W. Schafer, 'Morphological Filters- PartI:TheirSet-Theoretic Analysis and Relations to LinearShift-Invariant Filters', IEEETransactions on Acoustics, Speech, and SignalProcessing, ASSP-35(8):1153-1169, August, 1987
  5. P. Maragos R.W.Schafer, 'Morphological Filters- Part II: Their Relation to Median, Order-Statistic, and Stack Filters' , IEEE Transactions on Acooslics, Speech, and Signal Processing, ASSP-35(8):1170- 1184, August, 1987
  6. P.Maagosand R.W.Scharer, 'Moq:hological Skeleton Represent-arion and Coding of Binary Images', IEFE Transactions on Acoustics,Speech,and Signal Processing, ASSP-34(5):1228-1244, Otober, 1986
  7. R.M.Haralick, X.Zhuang, C.Lin and J. S. J. Lee. 'The Digital Morphological Sampling Theorem'. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(12):2067-2090, December 1989
  8. R.M.Haterberg, X. Zhuang, 'Image Analysis Using Mathematical Morphology', IEEE Transactions on Pattern Analysis and Machine Learning, Vol. PAMI - 9 : 532-550, 1987
  9. Woonkyung Michael Kim, "A Morphological APProch to Smooth-ing", Conference on Learning Theory< Santa Cruz, 1991
  10. M. Wooonkyung Kim. A Morphological Approach to Learnig. Ph.D.Dissrtation, Harvard University, October 1993
  11. W. M. Kim and S. M. Song, "Morphological approach to smoothing", in Proc. SPIE, vol.3074,(Orlando, FL), 1997
  12. Woonkyung Michael Kim "Morphological approach to Smoothing: Stochastic Morpholpgical Sampling Theorem" SPIE Vol 3304 PP.108-119, January, 1998
  13. Woonkyung M.KIm, S. Moon-Ho Song, Sun Geun Kim, Chuck Yoo, Chongyul Yoon Jung Soo Kim "On Morphological SMoothing", IEE Eletrinics Letters, January, 2000
  14. Woonkyung M. Kim, "A Representation Theory for Morphological Signal Processing: Slice Morpholgical Signal Processing" (under Preparation)
  15. Woonkyung M. Kim, "Skeleton Coding and Decoding bia Slice Morphological Signal Proocessing" (under preparation)
  16. A. Bruce Carlson. Communicatior SysteMs: An Introducion to Signals and Noise in Electrical Communication. Mcgraw Hill, Third Edition, 1986
  17. J.M.Wozencraft and I. M. Jacobs. Principles of Communication Engineering. John Wiley & Sons, 1965
  18. Arthur E. Bryson and Yu Chi Ho. Applied Optimal Control. Hemisphere Puublishing Corporation, Second Edition, 1975
  19. C. T. Chen. Introduction to Liner Sustem Theiry. Holt, Rinehart and Winston, Inc., First F,dition, HRW Series in Electrical Engineering, Electronecs, and Sustems, 1970
  20. Alan V. Oppenheim and Ronald W. Schafer. Discrete - Time Sihnal Processing. Prentice Hall, First Edition, 1989
  21. A. K. Jain. Fundamentals of Digital Image Processing. Pretice-Hall, 1989
  22. L. R. Rabiner and R. W. Schafer. Digital Processing of Speech Signals. Prentice-Hall, 1978
  23. Balas K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kaufmann, 1991
  24. Athanasios Papoulis. Probaility, Random Variables, and Stochastic Processes. McGraw Hill, Third Edition, 1991
  25. T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons, 1991
  26. R. O. Duda and P. E. Hart. Pattrrn Classification and Scene Analysis, John Wiley & Sons, 1973
  27. Thomas Kailath. Linear Systems. Prentice Hall, First Edition, 1980
  28. Erwin Kreysig. Introductory Functional Analysis with Appkications, John Wiley & Sons, Second, 1989
  29. H. J. Zimmermann. Fuzzy Set Theory and Its Applications. Kluwer Publisher, Second Edition, 1990
  30. M. Barnsley. Fractals Everywhere. Academic Press, 1985
  31. W. Rudin. Princioles of Mathematical Analysis. McGraw Hill, third Edition, 1976
  32. M.Garey and D. Johnson. Computers and Intractability: a Guide to the Theory of NPCompletness. W. H. Freeman, First Edition, 1979
  33. H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, First Edition, 1981
  34. L. G. Valiant. A theory of the Learnable. Communions of the ACM, 27(11):1134-1142, November 1984
  35. A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis Dimension. Journal of the Association for Computing Machinery, 36(4):929-965. Octover 1989
  36. Dana Angluin and Carl G. Smith. inductive inference: Theory and Methods. Cmputing Surveys, 15(3):237-269 Feburary 1984
  37. T. Poggio and F. Girosi. "A Theory of Networks for Approximation and Learning", Technical Report 31, Massachusetts Institute of Technolohy Artificial Intelligence Laboratory and Center for Biolohical Information Processing, Whitaker College, July 1989
  38. F. Arman, A. Hsu, M. Y. Chiu, "Image Processing on Compressed Datd for Larhe Video Databases", ACM Multimedia, 267-272, 1993
  39. H. J. Zhang, A. KanKanhalli, S. W. Smoliar, "Autornatic Partitioning of Full-Motion Video", Multimedia Systems, 1:10-28, 1993
  40. R. Zabih, J. Miller, K. Mai, "A Feature-Based Algorithm for Detectind and Classifying Scene Breaks", ACM Multimedia, 189-200, 0-89791-751-0, 1995
  41. A. Hampapur, R. Jain, T. E. Weymouth, "Production Model Based Digital Video Segmentation", Multimedia Tools and Applications, 1, 9-46, 1995
  42. B. L. Yeo, B. Liu, "Raoid Scene Analysis on Compressed Video", IEEE Transactions on Circuits and systens for Video Techanolohy, Vol. 5, No. 6, 533-544, December 1995
  43. J. Meng, Y. Juan, S. F. Chang, "Scene Change Detection in a MPEG compressed Video Sequece", SPIE Symposium on Digitsl Video Compression, SPIE Vol. 2419,14-25, 1995
  44. H. Zhang, C. Y. Low, S.W. Smoliar, "Video parsing and Browsing Using Compressed Data", Multimedia Tools and Applications, Vol. 1, No. 1, 89-1 11, March 1995
  45. J. Feng, K. T. Lo, H. MehrPour, "Scene Change Detection Algorithm for M{EG Video Sequence", in Proc. IEEE Int. Conf . on Image Processing, 821-824,1996
  46. Y. Nakajima, K. Ujihara, A. Yoneyama, "Universal Scene Change Detection on MPEG-Coded Data Domain", in Proc. SPIE Visual Comm. and Image Proc., 992-1003, 1997
  47. O.N.Gerek, Y.Altunbasak, "Key Frame Selection from MPEG Video Data", SPIE Vol. 3024, 920925, 1997
  48. S.-F. Chang, Comlpsiting and Manipulation of Video Sihnals for Multimedia Network Video Service, Ph.D. Dissrtation, U.C. Berkeley, Aug., 1993
  49. S.-F. Chang and J. R. Smith, "Extracting Multi-Dimensional Signal Features for Content-Based Visual Query," SPIE Visual Communications and Image Processing, Taipei, May 1995
  50. W.-S. Chen, S.-F. Chang, P. Haskell, and D. G. Messerschmitt, "Structured Video Model for Interactive Multimedia Video," in preparation, 1993
  51. M. M. Yeung, B. L. Yeo, W. Wolf and B. Liu, "Video Browsing using Clustering and Scene Transitions on Compressed Sequences", In Multimedia Computing and Networking 1995, vol. SPIE 2417 399-413, Feb. 1995
  52. M. M. Yeung and B. Liu, "Efficient Matching and Clustering of Video Shots", In International Conference on Image processing, Vol. I, 338-341, 1995
  53. H. J. Zhang and D. Zhong, " A scheme for visual feature bassed image indexing", Proc. IS&T?SPiE ConF. on Storage and Retrieval for Image and Video Databases III, Feb. 1995, San Jose, pp.36-46
  54. D. L. Gall, " MPEG: A Video Compression Standard for Multimedin Applications", Communications of the ACM, April 1991, Vol. 34, No. 4,pp. 47-58