Advanced Wastewater Treatment of Low Concentration Ammonia Using the Immobilized Nitrifier Consortium

고정화 질화세균을 이용한 저농도 암모니아 폐수의 고도처리

  • Lee, Jung-Hoon (Department of Chemical Engineering, Pukyong National University) ;
  • Kim, Byong-Jin (Busan Bio-Industry Support Center(BiSC)) ;
  • Kim, Yong-Ha (Department of Chemical Engineering, Pukyong National University) ;
  • Yi, Gyeong-Beom (Department of Chemical Engineering, Pukyong National University) ;
  • Lim, Jun-Heok (Department of Chemical Engineering, Pukyong National University) ;
  • Cheon, Jae-Kee (Department of Chemical Engineering, Pukyong National University) ;
  • Suh, Kuen-Hack (Department of Chemical Engineering, Pukyong National University)
  • 이정훈 (부경대학교 화학공학과) ;
  • 김병진 (부산바이오기업 지원센터) ;
  • 김용하 (부경대학교 화학공학과) ;
  • 이경범 (부경대학교 화학공학과) ;
  • 임준혁 (부경대학교 화학공학과) ;
  • 천재기 (부경대학교 화학공학과) ;
  • 서근학 (부경대학교 화학공학과)
  • Received : 2001.12.20
  • Accepted : 2002.08.19
  • Published : 2002.12.01

Abstract

This study was performed in the airlift bioreactor using the nitrifier consortium entrapped in polyvinyl alcohol(PVA) for removing low concentration total ammonia nitrogen(TAN). At the superficial air velocity of 0.83 cm/sec, TAN removal rate and removal efficiency was $316.6{\pm}7.2g/m^3{\cdot}day$ and $92.8{\pm}2.2%$ respectively. Removal rate was continuously increased with decreasing hydraulic residence time(HRT) from 0.5 hr to 0.05 hr, whereas removal efficiency decreased with decreasing HRT. The optimum temperature for nitrification was $30^{\circ}C$ at which removal efficiency was $95.5{\pm}1.5%$. Nitrification was effectively performed at low temperature, $10^{\circ}C$. In the pH range from 7 to 9 in the bioreactor, removal rate and removal efficiency was $310{\pm}10g/m^3{\cdot}day$ and $94{\pm}3%$ respectively.

본 실험은 polyvinyl alcohol을 이용하여 고정화한 질화세균을 공기부상식 생물반응기에 충진시켜 저농도의 암모니아성 질소(total ammonia nitrogen, TAN)를 제거시켰다. 공탑 공기 유속 0.83 cm/sec에서 제거속도는 $316.6{\pm}7.2g/m^3{\cdot}day$, 제거효율은 $92.8{\pm}2.2%$였다. 수력학적 체류시간이 0.5시간에서 0.05시간으로 감소함에 따라 제거속도는 점점 증가하였으며, 제거효율은 체류시간이 증가함에 따라 증가하였고 체류시간 0.35시간 이상에서 최대 제거효율을 나타냈다. 질산화의 최적 온도는 $30^{\circ}C$였으며 제거효율은 $95.5{\pm}1.5%$였고 $10^{\circ}C$의 저온에서도 79%의 제거효율을 보여줌으로써 저온에서의 질산화가 가능하며, 반응기 내 pH7-9에서 제거속도와 제거효율이 각각 $310{\pm}10g/m^3{\cdot}day$$94{\pm}3%$를 유지했다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Bioresource Technology v.68 no.2 Nitrification at high ammonia loading rates in an activated sludge unit Campos, J. L;Garrido Fernadez, J. M;Mendez, R;Leema, J. M https://doi.org/10.1016/S0960-8524(98)00141-2
  2. Wat. Res v.31 Stuckey, D. C;Barber, W. P
  3. Chemosphere v.35 no.12 Kinetics of ammonium removal with suspended and immobilized nitrifying bacteria in different reactor systems Strotmann, U. J;Windecker, G https://doi.org/10.1016/S0045-6535(97)00341-X
  4. Water Research v.35 no.1 Chalk as the carrier for nitrifying biofilm in a fluidized bed reactor Green, M;Ruskol, Y;Lahav, O;Tarre, S https://doi.org/10.1016/S0043-1354(00)00239-6
  5. Aquaculture v.139 no.1-2 Ng, W. J;Kho, K;Ong, D. L;Sim, T. S;Ho, J. M https://doi.org/10.1016/0044-8486(95)01153-6
  6. Wat. Sci. Tech v.29 Tanaka, K;Nakao, M;Mori, N;Emori, H;Sumino, T;Naakamura, Y
  7. Water Research v.31 no.5 Rapid nitrification with immobilized cell using macro-porous cellulose carrier Matsumura, M;Yamamoto, T;Wang, P. C https://doi.org/10.1016/S0043-1354(96)00361-2
  8. Water Research v.35 no.5 Nitrification of high strength ammonia wastewaters: comparative study of immobilisation media Rostron, W. M;Stuckey, D. C;Young, A. A https://doi.org/10.1016/S0043-1354(00)00365-1
  9. Water Research v.31 no.7 Functional stability of temperature-compensated nitrification in domestic wastewater treatment obtained with PVA-SbQ/alginate gel entrapment Vogelsang, C;Husby, A;Ostgaard, K https://doi.org/10.1016/S0043-1354(97)00009-2
  10. Journal of Fermentation and Bioengineering v.68 no.4 Ariga, O;Yamakawa, T;Fujimatsu, H;Sano, Y https://doi.org/10.1016/0922-338X(89)90033-0
  11. Biotechnology and Bioengineering v.30 no.1 IMMOBILIZATION OF ACTIVATED SLUDGE BY PVA-BORIC ACID METHOD Hashimoto, S;Furukawa, K https://doi.org/10.1002/bit.260300108
  12. J. Korean Environ. Sci. Soc v.8 Suh, K. H;Kim, Y. H;Cho, J. K;Kim, B. J;Sae, J. K;Park, E. J;Kim, S. K
  13. Airlift Bioreactors, Elsevier Applied Science Chisti, M. Y
  14. 20th ed. EPS Group Standard Methods for the Examination of Water and Wastewater APHA;AWWA;WEF
  15. J. Environ. Hi-Tech v.5 Kim, C. W
  16. Biotechnology and Bioengineering v.53 no.2 Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor Garrido, J. M;van Benthum, W. A;van Loosdrecht, M. C. M;Heijnen, J. J https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M
  17. Aquacultural Engineering v.18 no.3 Evaluation of the nitrification rates of microbead and trickling filters in an intensive recirculating tilapia production facility Timmons, M. B;Greiner, A. D https://doi.org/10.1016/S0144-8609(98)00030-2
  18. Theories and Application Chem. Eng v.5 Suh, K. H;Cho, J. K;Kim, B. J
  19. Environmental Technology v.15 no.11 Kinetic Behaviors of Nitrifying Biofilm Growth in Wastewater Nitrification Process Liu, Y;Capdevelle, B https://doi.org/10.1080/09593339409385509
  20. J. WPCF v.55 Pano, A;Middlebrooks, E. J
  21. Journal of Fermentation and Bioengineering v.86 no.4 Conditions for nitrification and denitrification by an immobilized heterotrophic nitrifying bacterium Alcaligenes faecalis OKK17 Nishio, T;Yoshikura, T;Mishima, H;Inouye, Z;Itoh, H https://doi.org/10.1016/S0922-338X(99)89003-5
  22. J. WPCF v.56 Randall, C. W;Buth, D
  23. Water Research v.11 no.10 Nitrification and nitrogen removal Sharma, B;Ahlert, R. C https://doi.org/10.1016/0043-1354(77)90078-1
  24. Water Research v.35 no.2 Ammonium removal using a novel unsaturated flow biological filter with passive aeration Lahav, O;Artzi, E;Tarre, S;Green, M https://doi.org/10.1016/S0043-1354(00)00264-5