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Abstract. A more comprehensive analytical framework for examining the relative merits of alternative
dispatching process policies for nurseries is developed in this paper. The efficiency of the dispatch process of
plants in a nursery is analysed using a vehicle routing model. The problem then involves determining in what
order each vehicle should visit its locations. The problem is NP-hard. Several heuristic techniques are used to
solve a real life nursery sequencing problem. The results obtained by these heuristic techniques are compared
with each other and the current sequencing of orders. The model with some minor alterations can be also used to
minimise the dispatching and collecting process in different agricultural plants.
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1. INTRODUCTION

This paper outlines the development of a model to
analyse the transporting of plants from the growing area
to the dispatch shed for detailing and packaging, and the
logistics of such operations. The dispatch process of
plants from production nurseries is the most costly, labour
intensive and inefficient operation in the Australian
nursery industry. The dispatch process is defined as all the
tasks which are performed between the time an order is
received to the time the plant is awaiting loading to
external transport.

The main factors affecting a nursery dispatching can
be detailed as follows:

» size of the nursery;

= number and size of orders;

= number of plant species in each of the three areas (that
is open, shaded and greenhouse) and number of loca-
tions available in each of the these areas;

= number of growing bays required and monthly
demands by each species;

= location of the plants in relation to the dispatch shed;

= number of periods;

= tasks involved and sequence of plant processing;

» number and type of plants processed and pot size used
for these plants;

= number of persons involved in tasks and their duration;

» unproductive time;

= type of equipment available for transportation of plants;

and
= number of times it is necessary to go to a specific
location of the nursery.

The objective is to schedule a series of routes such
that the minimum number of vehicles is used and the total
distance is minimised with all locations being serviced.
The problem then involves determining in what order
each vehicle should visit its locations.

There is one route per vehicle, which starts and
finishes at a central facility area. The problem is NP-hard,
where NP stands for non-deterministic polynomial . There
is currently no known polynomial time algorithm for
computing the optimal solution, however, any correct
solution can be verified in polynomial time with respect to
the size of the problem (Christofides er al., 1989 and
Lenstra J. and Kan R. 1981). The classical text on computa-
tionat complexity is by Garry and Johnson (1979) and
Parker and Rardin (1988).

There are several possible objective functions for the
problem. These include minimising distance, minimising
travelling time, minimising the number of vehicles and
minimising total cost. The basie Vehicle Routing Problem
(VRP) ignores a large number and variety of additional
constraints and extensions that are often found in real-life
problems. There are many extensions of the basic VRP to
account for the large number of practical applications
(Christofides ef al., 1989). There are many derivatives of
the VRP, which are usually of the form of extra constraints
or mixtures of constraints. Examples of these can be
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found in Kozan (2000), Dror et al. (1994), Balakrishnan
(1993) and Laporte ef al. (1992). Further constraints that
can be included are as follows: duration of the route; start
and end locations for the route/driver; start times of
routes; weight and volumes restrictions on vehicle load;
loading constraints and restrictions; rules for split deliveries
(pickups) if any; and multiple routes per vehicle. Research
into solutions for the VRP have been two pronged,
optimal and near optimal (heuristic) solutions. Exact
solution techniques used to solve the VRP can be put into
three broad categories; tree searches; dynamic programming;
and integer linear programming. Details of these techniques
can be found in Christofides (1989) and Laporte (1992).
Kulkarni and Brave (1985) provided integer programming
formulations of vehicle routing problems. They introduced
several formulations for the travelling salesman problem,
the m-travelling salesman problem, the vehicle routing
problem and the multi-depot vehicle routing problem.
Desrochers et al. (1988) improved the Kulkarni and Brave
(1985) model with additional extensions for time horizon
planning.

The computational complexity of NP-Hard problems
increases exponentially with the number of components in
the schedule. This makes it difficult to solve in reasonable
time with the current exact solution techniques, (ic.
Branch and Bound, Tree Searches). This implies that for
large size real life problems heuristic techniques have to
be used. Heuristic techniques can be grouped into the
following classifications Osman (1993): constructive meth-
ods; two-step methods; exact but incomplete tree search
methods; and improvement methods. Constructive methods
are those that build up vehicle tours by inserting at each
step a location according to some savings measure until
all locations are served. The most used of these is the
Clark and Wright (1964) Savings Method. Bramel &
Simchi-Levi (1995) introduced a general framework for
modelling routing problem based on formulating them as
a traditional location problem called the capacitated con-
centrator location problem. They applied this method to
two classical routing problems: the capacitated vehicle
routing problem and the inventory routing problem.

Other two-step algorithms can be found in Christofides
(1989) and Laporte et al. (1992). Improvement methods
iteratively improve a given solution by making local
changes. Osman (1993) made the observation that most
iterative improvement methods start by using a construc-
tive method to obtain an initial feasible solution, and used
an improvement technique that reduced the cost of the
tour by making the local changes while maintaining
feasibility. More popular improvement methods are simulated
annealing, genetic algorithms and tabu searches. These
heuristic techniques have been used to solve the real life
material-handling problem, which yields a good solution
to a problem, but cannot be guaranteed to produce an
optimum.

Kirkpatrick ef al. (1993) discovered the analogy
between achieving a low energy state in a metal and
optimisation problem. A metal allowed to cool slowly
from a high temperature to a low temperature will reach a
state of minimum energy. With this in mind, Kirkpatrick
developed simulated annealing to solve the travelling
salesman problems using the Metropolis algorithm.

Holland (1998) devised a new research mechanism,
which he called genetic algorithm, based on Darwin’s
(1859) principle of natural selection. In its simple form,
genetic algorithm recursively applies the concepts of
selection, crossover and mutation to a randomly generated
population of promising solutions with the best solution
found being reported.

2. NURSERY DISPATCHING MODEL

In relation to the nursery sequencing problem the
central facility of the depot is the dispatch shed. All
trailers leave and return to the dispatch shed. The objec-
tive is to minimise the travelling distance when collecting
orders, The orders are available at the beginning of each
morning and consequently the demands for each species
are known in advance. In the case of using more than one
trailer their capacities are assumed homogenous. Capacity
is measured in terms of the number of 140mm pots that
can be transported by a trailer. A conversion factor is used
to convert all demands in terms of 140mm pots.
Travelling distances between all locations are measured
for an input to the model. If the demand for a plant
species exceeds the trailer capacity the load is split into
two (or more) full trailer loads and only the remainder
considered.

Notations

dem, : Demand for plant species 7.

dist, : The total distance to travel from plant species ; to
7 Where =2, 3, ..., n. ({ =1 refers to the dispatch
shed) and j =2, 3, ..., ».

c : The capacity of a trailer in terms of 140mm pots.

u, and y, : Arbitrary real numbers

1 ifin route » the location of plant j is visited just

Ky = after the location of plant 7.
0 otherwise
where » =1, 2, ++, m.
B [ 1, if plant species ¢ is visited in route »
" 710, otherwise
Objective

The objective is to minimise the total travelling time:
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Minimise Z= 2,2, 2, dist, x,, ()
H 7 ¥

Constraints
The model is subject to the following constraints:

1=2,3,,m
i=1

1
Zvo=| @)
7 m
Constraint (2) ensures that every plant species is
allocated to some route (except the dispatch shed which is
visited in every route).

2 def’nzyzréc VV (3)

Constraint (3) is the vehicle capacity constraint. The
number of pots collected in any one route must not exceed
the capacity of the trailer.

Z xur=2, Xor = Yor Vi, r (4)

Constraint (4) ensures that if a plant location is
visited in a particular route it must also be left in that
same route.

Esx,,,slsl—1 vSC {23, n and V¥ (5)
LLE

Constraint (5) prohibits any subtours ensuring that
whole tours are completed at all times.

v, {0,1) Vir (6)
xzjre {0, 1} \Vl i, j, v (7)

Assumptions

The following assumptions are made to simplify the

situation:

= At the beginning of each day the orders are sorted and
the total number of each species required is known. The
different species are divided into groups by location
and the number of plants required in that specific
location recorded;

= There exists uniform stock and the selection of plants is
not required. This implies that plants are picked one
after each other and no sorting through plants is
required;

= The distances from the dispatch area to each growing
bay are define as the distance travelled from the
dispatch area to the midpoint of the front of a growing
bay plus the vertical distance up to the middle of that
growing bay;

= All routes are either horizontal or vertical;

» The nursery size is assumed large enough so that there
is generally enough of each species to fill at least one

trailer or perhaps make allowances for those species in
low demand and group these together;

= A conversion factor is set to convert the number of pots
of each of the six sizes held by a trailer to 140mm pots;

« It is assumed that regardless of the picking strategy
plants should be allocated according to demand. That
is, having plants in higher demand closer to the dispatch
shed, consequently reduce the distance travelled to
collect orders;

= Once a species is allocated a location in the nursery it
stays there until demanded.

3. SOLUTION TECHNIQUES

A vehicle routing problem has been formulated as
mixed Integer programming to solve the problem of
collecting orders in an efficient manner and solved for a
smaller size problem using the Generalised Algebraic
Modelling System, GAMS (1998). An optimal solution
for a real life problem can not be found by packages like
GAMS in a reasonable time period because it would be
impractical to wait several hours for a solution when
pickers have to commence collecting orders early in the
morning. So heuristic techniques have been used to solve
the real life nursery sequencing problem which yields a
good solution to a problem, but cannot be guaranteed to
produce an optimum. Three heuristic techniques, namely
Clark and Wright method, sweep algorithm and genetic
algorithm have been applied on a real data set. The
heuristic techniques are validated by comparing the
results for a number of small problems with the present
sequencing of orders. The paper presents the results of
applying the model to a problem that is indicative of the
size experienced in the nursery industry, with three
trailers and 22 locations. The three heuristic techniques
are then compared for the solution values obtained and the
time frame required.

3.1 Clark and Wright algorithm

The Clark and Wright algorithm initially constructs
routes from the depot and each of the locations (-1
routes). Then measures of savings are determined by
calculating the amount of time/distance saved by linking
two locations. The algorithm then joins the pairs in
decreasing distance value of savings, subject to constraints
(Equations (1) to (7)). Two algorithms are coded, one for
the parallel version and the other for the sequential version.

3.2 Sweep Algorithm

The sweep algorithm method uses both distances
from every location to every other location, and the angle
of rotation from the dispatch shed. The method sweeps
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from a location in order of angle of rotation while the
capacity constraints are not violated. The locations
included in the sweep become the next cluster. The
method continues sweeping until all locations are
assigned to a cluster. Once the clusters are assigned, a
Travelling Salesman Problem (TSP) is solved for each
cluster to arrive at the minimum route distance for that
cluster.

In contrast to the Clarke-Wright algorithm, the
sweep algorithm requires geographical co-ordinates for
each location. There are several variations of the sweep
heuristic. The following steps listed below give an
overview of the sweep algorithm process as imple-
mented.

Step 1. Pass an arc through the depot in a northerly
direction. The arc is sweep in a clockwise direction with
the depot as the pivot. A record is kept of the order of the
customers.

Step 2. Choose an unused vehicle.

Step 3. Starting with the first unrouted customer on the
list, include consecutive customers until the capacity
constraint of the vehicle is reached.

Step 4. If all customers are swept’ or if all vehicles have
been used go to Step 5, else return to Step 2.

Step 5. Solve the TSP for every set of customers assigned
to a vehicle to form the final routes, The actual sequence
can be determined as a travelling salesman problem since
there is no longer a capacity constraint.

Step 6. Carry out steps 1 to 5 for all possible starting
points, that is starting from each of the different directions
(north, south, east and west). The whole procedure is again
repeated but this time sweeping in an anticlockwise
direction. The best of the eight solutions is chosen.

The sweep heuristic produces several solutions
which can often be advantageous especially when there
are other constraints to consider.

3.3 Genetic Algorithm

Genetic Algorithms (GA) are a subset of what is
known as Evolutionary Algorithms. Other major subsets
are Evolutionary Programs, Evolutionary Strategies,
Classifier Systems and Genetic Programming. A GA is an
adaptive search technique, based on the principles and
mechanisms of natural selection and survival of the fitness
from natural evolution. GAs grew out of Holland’s (1998)
study of adaptation in artificial and natural systems. In
this study, GA algorithms had been used because it is
generally accepted that by simulating natural evolution in
this way, a GA can effectively search a very large broad
class of problems’ domains and easily solve complex
problems. Relatively good results that have been reported
with even the simplest GA implementation. In addition,
by emulating biological selection and reproduction
techniques, a GA can perform searches in an independent

manner. If the genetic representation of two different
vehicle routing problems is identical, then it is usually
possible to optimise both problems with few changes to
the underlying GA. In this case only changing the opera-
tional parameters of the GA is enough.

Goldberg (1989) defined GA as search procedures
based on the mechanics of natural selection and natural
genetics. GA represent potential solutions to a problem as
genotypes. These genotypes (chromosomes) form a popula-
tion, which undergo processes that resemble natural
genetics.

A genetic algorithm (as any evolution program) for a
particular problem must have the following five compo-
nents:

= a genetic representation for potential solutions to the
problem;

=a way to create an initial population of potential
solutions;

« an evaluation function that plays the role of the
environment, rating solutions in terms of their fitness ;

= genetic operators that alter the composition of children;
and

« values for various parameters that the genetic algorithm
uses (population size, probabilities of applying genetic
operators, etc.).

The genetic operators referred to above are generally
of two types: crossover and mutations. The crossover
operator is the method of transforming a pair of surviving
genotypes into a pair of offspring genotypes. The classical
crossover involves cutting each genotype into two
segments and swapping the segments, creating two different
genotypes with characteristics from each parent. This
carrying of segments allows the possibility of good string
segments to be preserved. Each genotype will have a
probability of mutation. “Mutation arbitrarily alters one or
more genes of a selected chromosome, by a random
change with a probability equal to the mutation rate”
(Michalewicz, 1994).

Typically, a binary encoding to map a GA chromo-
some to a single point in the problem space is used. In
many functional problems an x-dimensional problem
must be solved. To do this, a parameter set is used and it
is partitioned into bit strings. Each bit-string encodes a
single parameter. The classic operators, which act on
these bit-strings, are crossovers and mutations. Crossovers
typically involve exchanging randomly selected bit-string
chunks between two parents to create two children
genotypes. Mutation involves scanning each bit in the
bit-string, and with low probability, toggling that bit. For
this implementation a path representation is used because
the path representation is perhaps the most natural
representation of a tour. In this representation the chromo-
somes are a string, of length equal to the number of
locations (racks), of integers with each number occurring
only once. That is, each chromosome contains all integers
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from one to the number of locations. The order of the
genes in a chromosome represents the path of the tour. If
in the following, each number represents a particular rack
then a chromosome representation(32154) is a tour
from rack represented by 3 to the rack represented by 2
etc.

Many methods are available in GA literature but
most of them are only suitable for binary coding. Since
the routing problem is a permutation problem the choice
of crossover method is limited. Partially mapped cross-
over, cycle crossover and order crossover methods are the
most suitable of these for vehicle routing problems. Each
of these operators creates a child from two parents and
qualities are transferred from both parents to the child.
Partially mapped crossover method builds an offspring by
choosing a subsequence of a tour from one parent and
preserving the order and position of as many locations as
possible from the other parents, see Goldberg (1989). The

order crossover method builds offspring by choosing a

subsequence of a tour from one parent and preserving the
relative order of the locations from the other parent, see
Davis (1991) for details. The cycle crossover method
builds offspring in such a way that each location (and its
position) comes from one of the parents and preserves the
absolute position of the elements in the parent sequence,
(see Oliver er al.(1987) for details). The more popular
partially mapped crossover method is used in this study
and explained in detail at Step 8 below.

The following steps give an overview of the genetic
algorithm process as implemented.
Step 1. Initialise the GA parameters of potential solu-
tions. Set the maximum number of generations, the
maximum number of chromosomes in a population,
population size, population renewal rate, probability of
crossover and probability of mutation. The coding which
is used is not a binary coding, because the problem is a
permutation problem and the output is a permutation of
the input. Randomly allocate the numbers 1 to the total
number of locations N for each chromosome.
Repeat (Steps 2-9) for pre-defined iterations.
Step 2. Calculate the travelling time between gene 7 and ¢
+1 and picking time at ;+ 1 for each gene in the chromo-
some. For the selection process (selection of a new popula-
tion with respect to the probability distribution based on
fitness values) a roulette wheel method is used. It assigns
a probability to cach chromosome ; computed as the
proportion, p,= p,/ 2, p, where p, is the fitness of chromo-
some 7. A parent is then randomly selected based on this
probability
Step 3. Calculate tour time for each chromosome (sum-
mation of times calculated in Step 2). The solution is then
checked to satisfy the physical constraints. The chro-
mosomes that don't satisfy the constraints are repaired
in the initialisation of the first generation. If in generation
1 all constraints are satisfied then algorithms ensures that

in the future generations this will be true.

Step 4. Compare all tour times with global minimum,
and replace the global with the new minimum tour if
necessary. If all the constraints are satisfied the fitness
function evaluate using objective function, is calculated.
The tour time acts as the evaluation function for the
fitness of each chromosome.

Step 5. Create probabilitics of survival. This gives the
probability that a chromosome will survive to be used as a
parent to produce offspring for the next generation of the
genetic algorithm. The probability is inversely propor-
tional to the tour time of the chromosomes, and is calculated
by dividing the tour time of the minimum chromosome by
the time of the chromosome in question, then dividing this
by the sum of these divisions. This gives probabilities
summing to one, where chromosomes with small tour
times have greater chance of surviving.

Step 6. Use the probabilities from Step 5 to randomly
generate the surviving population. Note that chromosomes
with high probability of survival can actually increase in
numbers causing multiple copies of the chromosome.

Step 7. For the population of surviving chromosomes,
pairs are chosen randomly to undergo the crossover
operator. The random allocation helps to vary the potential
offspring.

Step 8. Crossover is the method that mixes the genes of
two parents to obtain off spring. In Partially mapped
crossover, firstly two crosspoints are selected randomly
between 0 and N (the length of gene). Genes from the first
parent that fall between the two crosspoints are copied
into the same positions of the offspring. The remaining
order is determined by the second parent. Non duplicated
genes are copied from the second parent to the offspring
beginning at the position follows the second crosspoint.
Both the second parent and the offsprings are traversed
circularly from that point. The surrounding positions are
filled from the other parent, keeping where possible the
same position and order. A copy of the parents next non
duplicative genes is placed in the next available child
position. An example of how the crossover works in a
data set used is shown below. If cut points are chosen at 3
and 17 (indicated by |) then examples of two parents could
be

Pl=(1104]521317161821191412152069{37811)
P2=(8311]461821201314191712161591]57102)

Then the two offspring would look as follows (‘x’ repre-
sents still to be determined).

Ol=(xxx|461821201314191712161591|xxXxX)
O2=(xxx]521317161821 191412152069 |xxXX)

The next step is to place locations in offsprings from
original parent, provided no conflict is encountered.



Efficiently Solving Dispatching Process Problems in Nurseries by Heuristic Techniques

Ol=(x10x|461821201314191712161591|37811)
02=@8311|521317161821191412152069|x710x)

The other values are gained by placing the opposite
location to that which is causing the conflict. For example
the third position of offspring number 1 would have been
4 except that 4 is now at position 4, so position three is
replaced with location 5. Other replacements are more
complicated and involve following trail until a free value
that does not occur exists. An example of this is position
one offspring one, this should have been replaced with 9,
but, 9 also exists in segment so we choose 6, but, 6 is also
in segment so we choose 2. This rule results in the
following two offspring:

O1=(2105]461821201314191712161591|37811)
02=(8311|521317161821191412152069|47101)

Step 9. Randomly mutate genes with mutation rate
probability. If mutation occurs (only one per chromosome
is allowed), two locations will swap in position within the
chromosome.

End

4. RESULTS

The above heuristics have been applied to a given
day's orders. A record of a day's orders along with the
actual sequence of collection, a map of the stopping
places and distances were available.

Different species often require different pot sizes.
These pot sizes usually range from 100mm to 350mm. It
is for this reason that it has become standard practice
fwithin the nurseries to convert all pot sizes to a base unit,
this being a 140mm pot. That is, all demands have been
converted into the equivalent number of 140mm pots and
provided in Table 1. The capacity of a trailer is 360 pots,
in terms of the number of 140mm pots that it can transport
at any one time.

The stopping numbers is provided in Table 2. These
numbers show the actual order in which the plants are
collected. There are 21 different locations and the
distances between each location have been measured and
used in the model. At any one location several different
plant species are loaded onto the trailer.

The Clarke-Wright savings algorithm has been

Table 1. Pot conversion factors

Pot size | 100 | 125 | 140* | 175 | 200 | 300 | 350

Factor | 0.51 | 0.80 | 1.00 | 1.55 | 2.04 | 5.00 | 13.00

* base unit

Table 2. Present dispatching process

15

Trailer 1
Stop Species and # of |Conversion| Converted

No Pot Size Pots Factor # of Pots
1 || Dipladenia 140 6 1.00 6.00
2 || Agapanthus 200 | 12 2.04 25.00
Bushy Blue 200 | 31 2.04 63.24
3 Gretel 350 2 13.00 26.00
Primrose 350 4 13.00 52.00
Bushy Blue 140 | 32 1.00 92.00
4 Annabel 200 5 2.04 10.20
Annabel 350 2 13.00 26.00
Gretel 200 5 2.04 10.20
5 | Carmella 200 5 2.04 10.20
Celia 200 5 2.04 10.20
Total 333.00

Trailer 2
Golden beauty 140 | 36 1.00 36.00
6 || Pink Numenos 140 | 12 1.00 12.00
Evolvulus 140 | 30 1.00 30.00
7 | Prima Dona 140 6 1.00 6.00
8 || Liriope 140 | 144 1.00 144.00
9 | Vibernum 140 | 12 1.00 12.00
Bushy Blue 300 3 5.00 15.00
10 | Ballerina 300 9 5.00 45.00
Duranta 300 1 5.00 5.00
1" Riding Hood 200 | 12 2.04 24.48
My Fair Lady 200 2 2.04 4.08
12 | Scarlet Pimpernal 200 | 13 2.04 26.00
Total 359.00

Trailer 3
Dracellia 100 | 10 0.51 5.10
13 Dryopeteris 100 5 0.51 2.55
Humata 100 5 0.51 2.55
Aglamorpha 100 5 0.51 2.55
Spathiphyllum 140 6 1.00 6.00
14 Sandra 140 6 1.00 6.00
Sandra 175 3 1.55 4.65
Emeraldbeauty 140 | 12 1.00 12.00
15 || Gretel 140 6 1.00 6.00
16 | Primrose 200 1 2.04 3.00
17 || Springfire 300 4 5.00 20.00
18 | Victoria 175 | 27 1.55 42.00
19 | Victoria 200 4 2.04 9.00
Swan Lake 140 6 1.00 6.00
Majestic 200 4 2.04 8.16
20 | Misty Pink 200 4 2.04 8.16
Golden Yulow 200 | 10 2.04 20.4
Pink Parpait 200 | 10 2.04 20.4
21 || Merlin’s Magic 200 | 11 2.04 23.00
Total 209.00
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Table 3. Results from the Clarke-Wright algorithm

Table 5. Genetic algorithm

* Sequence of Picking from location

solved both sequentially and in parallel and the results are
provided in Table 3. While the solutions above do give
the order of visiting the plant species it is still beneficial
to solve the travelling salesman problem for each trailer in
the final allocation to obtain the true optimum order of
visiting within each subset. Some improvements were
found when each subset was solved using the TSP. Table
4 shows the sweep algorithm results for sweeping in a
clockwise direction and anti-clockwise direction for initial

Table 4. Sweeping algorithm’s results

Sweeping in a Clockwise Direction

Trailer Best tour using TSP

1 DISP-17-2-3-1-15-14-13-DISP

2 DISP-12-6-7-8-4-10-DISP

3 DISP-20-21-9-16-5-19-18-11-DISP

Total travelling distance (meters) 2155
Sweeping in an anti-clockwise direction
Trailer Best tour using TSP
1 DISP-12-21-20-9-16-3-19-18-11-DISP
2 DISP-10-4-8-7-6-17-DISP
3 DISP-13-14-15-1-3-2-DISP
Total travelling distance (meters) 2146

Parallel Version Trailer Best tour using GA
Trailer Best tour 1 DISP- 13-14- 12-21-20- 11- DISP
1 Disp-9-5-16-4-3- 2-1-15-Disp* 2 DISP-15-1-2-3-4-19-18-DISP
2 Disp-10-17-8-7-6-13-14-Disp 3 DISP-10-17-6-7-8-5-16-9-DISP
3 Disp-12-21-20-19-18-11-Disp Total travelling distance (meters) 1943
Total travelling distance (meters) 2032
Sequential Version st.arting direction West. Genetic algqrithm'results are
given in Table 5. It is clear that for this particular set of
Trailer Best tour data the GA provides the best solution. This solution
. results in 20.3% savings in travelling distance.
! Disp-15-1-2-3-4-16-5-7-9-DISP The best total travelling distance of the trailers have
2 DISP-10-17-8-6-18-19-DISP been determined by GA and shown on the layout of
nursery in Figure 1.
3 DISP-11-20-21-12-14-13-DISP It is interesting to note that even after 3.6 million
iterati in 1960 minut ing branch d
Total travelling distance (meters) 2056 terations n {utes using, brane am;l boun .t}.le
solution is not as good as the worst performing heuristic

technique. The optimum solution could not be found
because of computer memory limitations and time restric-
tions. The results from each of the heuristic techniques
have been compared in terms of the solution value and the
time required in obtaining these results. The results of all
the heuristic techniques are summarised in Table 6. Set up
time for the genetic algorithm is the longest, about ten
minutes. The set up times of the other heuristcs is very
close to each other, about five minutes. Therefore, obtaining
a solution by genetic algorithm takes about ten minutes
longer than the other methods. However, this time
difference is negligible because within the time window
specified by the nursery manger, the method gives a
20.37% travelling distance saving.

ER .

Figure 1. Presentation of best tours on the layout of
nursery
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Table 6. Comparison of techniques

Travelling| Running | Saving
Techniques distance as| Time as as
meters | minutes %
Benchmark 2440 0.00
actual distance
CIarke~erght savings 2032 <1 16.72
algorithm-parallel
Clarke;anht savings 2056 <1 15.74
algorithm sequential
Sweep a'lgorl.thm ina 2155 <1 11.68
clockwise direction
Sweep algorithminan |, ¢ <1 12.01
anti-clockwise direction
Branch and bound
(360000 iterations) 2192 1960 10.16
Genetic algorithm 1943 4.8 20.37

5. CONCLUSIONS AND FUTURE WORK

It has been shown that heuristic techniques can
reduce the travelling distance substantially. From the
results above it can be seen that significant savings can be
achieved by implementing a method of collecting daily
orders and an improved nursery plant layout. The
collecting of orders is a task performed on a daily basis
and is by far the area which has the most potential for
reducing costs.

There are some practical considerations to address
before a heuristic technique can be implemented. After
determining the routes for the different trailers another
question arises: In what order should the trailer loads be
collected? The order will make no difference to the total
travelling distance but it will effect the number of trolleys
waiting in the dispatch shed.

A quick turnover or species which must be visited
regularly for spraying, pruning, or trimming, should be
located as close as possible to the operational areas
(potting/propagation, dispatch). Species which have a
slow turnover or low maintenance should occupy the
furthermost reaches of the nursery. So, before applying
these heuristics, an optimal plant layout of the nursery
should be obtained according to yearly demands

The placement of operational facilities within the
nursery (ie. dispatch, potting/propagation areas) can have
a large influence on the total distance walked by nursery
workers, or the distance a product is carted, over a given
time period.

If the consolidated plant pull sheet is prepared
according to orders, consecutive orders collated until a
trailer-load of plants is totalled for a pull sheet, then this

may result in a substantial degree of retracing steps during
pick-ups. Similarly, in the dispatch shed, if numerous
plants of one species are detailed together there is less
stop-start’ time compared with detailing order by order.
These considerations are particularly important in large
nurseries where travelling distances are much more
critical than in small nurseries. Then optimum order of
plant species collected by trailers will be determined to
minimise the distances travelled.

When a trailer load is completed it returns to the
dispatch shed where it is unloaded and the preparation of
individual orders is started. Incomplete orders are stored
on trolleys in the dispatch shed. For example, there are
five plant species required in a particular order. Three
species may be collected in the first trailer load while the
other two on the last. This will consequently result in the
trolley designated to this order waiting until the last trailer
load is completed. Having worked out the routes for each
trailer load the idea is to now order the trailer loads to
minimise the number of incomplete orders. Ideally it is
desirable to have complete orders started and finished on
the same trailer but this is often impossible to achieve.

As a result of this research it can be concluded that
Australian production nurseries need a good vehicle
routing and an efficient nursery layout. It is important to
note that a changed plant layout will in turn effect the
collection of orders and of course the distances used to
determine the order of collecting plants. Therefore, firstly
the nursery layout should be optimised and then the
vehicle routing system should be implemented.
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