DOI QR코드

DOI QR Code

Performance of Parallel Current Air Driven Type Foam Separator in a Pilot-Scale Recirculating Aquaculture System

Pilot-scale 순환여과식 양식장에서 병류 공기구동식 포말분리장치의 성능

  • Suh Kuen Hack (Division of Chemical Engineering, Pukyong National University) ;
  • Kim Byong Jin (Division of Chemical Engineering, Pukyong National University) ;
  • Kim Yong Ha (Division of Chemical Engineering, Pukyong National University) ;
  • Lee Seok Hee (Division of Chemical Engineering, Pukyong National University) ;
  • Suh Cha Soo (Division of Chemical Engineering, Pukyong National University) ;
  • Cheon Jae Kee (Division of Chemical Engineering, Pukyong National University) ;
  • Jo Jea Yoon (Department of Aquaculture, Pukyong National University)
  • Published : 2002.03.01

Abstract

The performances of a parallel current air driven type foam separator were evaluated in the pilot-scale recirculating aquaculture system. The system was stocked with Nile tilapia (Oreochromis niloticus) at an initial rearing densities of $2\%$, $5\%$ and $7\%$ of water volume of rearing tank and reared for 15, 30, 35 days, respectively. The condensated volume of effluent foam was increasing with increased rearing density. As increasing rearing density from $2\%$ to $7\%$, the protein concentration in rearing tank was increased from 16.6 g/$m^3$ to 21,9 g/$m^3$ and the removal amount of protein through foam separator as increased from 0.99 g/day to 2.5 g/day. But protein concentration ratio in the foam was decreased from 3.2 to 1.9. Changes of the removal amount and the concentration ratios of total suspended solid (TSS) and chemical oxygen demand (COD_cr.) were similar to proteins. The highest concentration ratios of TSS and COD_cr. were 10.2 and 8.4 at 2$2\%$ of rearing density.

본 연구는 사육조 용적 2.5$m^3$ 규모의 pilot-scale 순환석과식 양어장에 나일 틸라피아를 2, 5, $7\%$의 밀도로 사육하면서 사육조내의 수질과 포말분리기에 의해 배출된 포말농축액의 수질을 분석하여 병류 공기구동식 포말분리기의 실제 어류를 사육하는 양어장에서 나타내는 효율을 측정하고자 하였다 사육밀도가 증가함에 따라 단백질, 총 부유 고형물, 화학적 산소요구량 등 각 수질 인자의 농도가 증가하였으며 포말 농축액의 유출량도 증가하였다. 사육조의 단백질 농도는 사육밀도가 $5\%$에서 $7\%$로 높아짐에 따라 16.6 g/$m^3$에서 21.9 g/$m^3$으로 증가하였으며 일간 제거량은 0.99 g/day에서 2.5 g/day로 증가하였으나 포말의 단백질 농도는 50.6 g/$m^3$에서 36.6 g/$m^3$으로 감소하여 농축비는 3.2에서 1.9로 감소하였다. 사육밀도의 변화에 따른 총 부유 고형물과 화학적 산소 요구량의 일간 제거량, 농축비와 포말 농축액의 농도의 변화는 단백질 제거특성과 그 형태가 유사하였다 총 부유 고형물의 일간 제거량은 사육밀도 $2\%$일 경우 0.2g/d, $5\%$에서는 0.8 g/d 7%에서는 1.5 g/d로 사육밀도와 비례하여 증가하였으며 화학적 산소요구량의 일간 제거량은 사육밀도 $2\%$일 경우 1.6 g/d, $5\%$에서는 4.2 g/d, $7\%$에서는 7 g/d로 나타났다. 총 부유 고형물과 화학적 산소 요구량의 농축비와 제거량은 단배질과 비슷한 경향을 보였으며 총 부유 고형물과 화학적 산소 요구량의 농축비의 경우 $2\%$의 사육 밀도에서 각각 10.2, 8.4의 가장 높은 값을 나타내어 포말분리기가 양어장 순환수 처리에 효율적임을 알 수 있었다.

Keywords

References

  1. APHA. 1992. Standard Methods for the Examination of Water and Wastewater. 18th ed. Amencan Public Health Associadon
  2. Chen, S. 1991. Theorical and Experimental Investigation of Foam Separation Applied to Aquaculture, Ph. D. Thesis, Cornell Univ., USA
  3. Chen, S. 1994. Modeling surfactant removal in foam fraction I, II. Aquacultural Engineering, 13, 163-181 https://doi.org/10.1016/0144-8609(94)90001-9
  4. Chen, S., D. Stechy and R.F. Malone. 1996. Suspended solids control in recirculating aquaculture systems, In Aquaculture Water Reuse System: Eagineering Design and Management, Timmons, M.B. and T.M. Losordo, ed. Elsevier, Amsterdam, pp. 61-100
  5. Dwivedy, R.C. 1975. Removal of dissolved organics through foam fractionation in closed cycle systems for oyster production. American Society of Agricultural Engineers, 73-561
  6. Kim, B.J., J.H. Lee, S.K. Kim, Y.H. Kim, G. Yi and K.H. Suh. 2001. The removal of aquacultural wastes by foam separator from sea water-III. The effect of superficial air velocity, HWAHAKKONGHAK, 39, 123-129 (in Korean with English abstract)
  7. Jenkins, D., J. Scherfig and S.W. Eckhoff. 1972. Application of adsorptive bubble separation techniques to wastewater treatment. In Adsorptive Bubble Separation Techniques, R. Lemlich, ed. Academic Press, New York, pp. 219-248
  8. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with folin phenol reagent J. Biotech., 193, 265-275
  9. Rubin, E. 1981. Foam fractionadon-some recent studies, In Theory, Practice, and Process Principles for Physical Separations, Proceedings of the Engimeering Foundation Conference, M.P. Freeman and J. FitzPatrick, ed. Engineering Foundation, New York, USA., pp. 750
  10. Stickney, R.R. 1979. Seawater Aquariums, the Captive Environment, Wiley Interscience, New York, 375pp
  11. Suh, K.H. and M.G. Lee. 1995. Treatment of aquacultural recirculating water by foam separation -I. Characteristics of protein separation. J. Korean. Fish. Soc., 28, 599-606 (in Korean with English abstract)
  12. Suh, K.H., M.G. Lee, M.S. Lee, B.J. Kim, E.J. Kim and M.C. Cho. 1997. Treatment of aquacultural recirculating water by foam separation - II. Characteristics of solid removal. J. Korean. Fish. Soc., 30, 334-339 (in Korean with English abstract)
  13. Suh, K.H., B.J. Kim and S.K. Kim. 2000. Characteristics of proteins and total suspended solids removal by counter current air driven type, high speed aeration type and venturi type foam separator. J. Korean. Fish. Soc., 33), 205-212 (in Korean with English abstract)
  14. Suh, K.H., B.J. Kim and I.G. Jeon. 2001. Design and development of integrated recirculating aquaculture system. J. Korean Fish. Soc., 34, 70-76 (in Korean with English abstract)
  15. Wheaton, F.W., J.N. Hochheimer, G.E. Kaiser, MJ. Klones, G.S. Libey and C.C. Easter. 1996. Nitrification filter principle, In Aquaculture Water Reuse System: Engineering Design and Management, M.B. Timmons and T.M. Losordo, eds. Elsevier, Amsterdam, pp. 101-126
  16. Weeks, N.C., M.B. Timmons and S. Chen. 1992. feasibility of using foam fractionation for the removal of dissolved and suspended solids from fish culture water. Aquacultural Engineering, 11, 251-265 https://doi.org/10.1016/0144-8609(92)90008-L
  17. Wickins, J.F. 1980. Water quality requirements for intensive aquaculture: A review, In Symposium on New Developments in the Utilization of Heated Effluents and Recirculatioa Systems or Intensive Aquaculture. EIFAC, llth Session, Stavanger, Norway, 28-30 May

Cited by

  1. 유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거 vol.40, pp.2, 2002, https://doi.org/10.5657/kfas.2007.40.2.073