DOI QR코드

DOI QR Code

Estimating the Carrying Capacity of a Coastal Bay for Oyster Culture -I . Estimating a Food Supply to Oysters Using an Eco-hydrodynamic Model in Geoie-Hansan Bay-

굴 양식수역의 환경용량 산정 -I. 생태계 모델을 이용한 거제 · 한산만 굴 먹이 공급량 추정

  • Park Jong Soo (Marine Environment Management Division, National Fisheries Research In Development Institute) ;
  • Kim Hyung Chul (Marine Environment Management Division, National Fisheries Research In Development Institute) ;
  • Choi Woo Jeung (Marine Environment Management Division, National Fisheries Research In Development Institute) ;
  • Lee Won Chan (Marine Environment Management Division, National Fisheries Research In Development Institute) ;
  • Park Chung Kil (Department of Environmental Engineering, Pukyong National University)
  • 박종수 (국립수산과학원 환경관리과) ;
  • 김형철 (국립수산과학원 환경관리과) ;
  • 최우정 (국립수산과학원 환경관리과) ;
  • 이원찬 (국립수산과학원 환경관리과) ;
  • 박청길 (부경대학교 환경공학과)
  • Published : 2002.07.01

Abstract

A 3D hydrodynamic-ecological coupled model was applied to estimate a food supply to oysters in Geoje-Hansan Bay where is one of the oyster culturing sites in Korea, In this study, the primary productivity (PP) was adopted as an index of food supply, and the spatial patterns of average chlorophyll a concentration during a culturing seasons from September to May of the following year were simulated by the model, The numerical result showed that PP was high in the inner part of the bay and the adjacent areas of Hwado island, but low in the outer. This result indicates that PP is essentially influenced by anthropogenic nutrient loadings in the system. The model was calibrated using the field data in May which is non culturing season of oysters and a simulated phytoplankton biomass agreed fairly well with the observed data ($R^{2}=0.70$, $RE=10.3\%$). The computed food supply varied from 0.19 to $1.27\;gC/m^{2}/day$ with a mean value of $0.62 gC/m^{2}/day$ from September to May. The highest value was showed in May ($1.27 gC/m^{2}/day$) and the lowest was in February ($0.19 gC/m^{2}/day$).

거제 $\cdot$ 한산만 굴 양식어장의 수용력 산정에 가장 중요한 요소인 월별 먹이량 변동을 생태-유체역학 모델을 이용하여 산정한 결과는 다음과 같다. 비양식시기인 5월의 거제 $\cdot$ 한산만의 chlorophyll $\alpha$ 농도는 $0.29\~4.72$ (평균 $1.73{\mu}g/L$)로 낮은 농도를 나타내었고, 수평분포 특성은 화도 주변 수역에서 $2.0{\mu}$g/L 이상의 높은 농도 분포를 보인 반면, 만의 중앙부에 해당하는 산달도에서 봉암도 및 율포에 이르는 수역에서 1.4$\mu$g/L 이하의 낮은 농도 분포를 보였다. 거제 $\cdot$한산만의 잔차류는 표층의 경우 외양과 접한 남쪽의 협수로에서는 10 cm/sec의 유속으로 남쪽 방향으로 유출하고, 송도와 비산도 부근에서는 5cm/sec 내외의 유속으로 북서 방향으로 흐름이 진행되었으며, 만 중앙부에서는 내측에서 외측으로 유출하는 형태였으나 유속의 크기는 3cm/sec 이하로 작게 나타났다. 중층은 전반적으로 유속의 크기가 감소하였고, 만 중앙부근에서는 표층의 흐름과는 반대로 만 내측으로의 흐름이 뚜렷하였으며, 저층에서는 수로를 중심으로 흐름이 나타났다. 생태계 모델에 의해 비 양식시기로 가정한 5월의 식물플랑크톤 분포를 재현한 결과 실측치와 계산치의 적합성의 정도를 나타내는 $R^{2}$값은 0.70, 상대오차는 $10.3\%$이었고, 재현된 분포 특성은 화도와 거제시 둔덕면 사이의 수로 부근 수역과 하천의 영향을 많이 받는 만 내측 수역에서 높은 농도분포를 나타내었고, 외해 방향으로 갈수록 점차 낮아지는 경향을 보였다. 이것은 만내로 유입하는 유입부하에 직접적으로 영향을 받고 비교적 정체수역인 만 내측에서 기초생산력이 높다는 것을 나타내었다. 생태계 모델을 이용하여 9월부터 다음해 5월까지 월별 먹이 공급량을 추정한 결과 $0.19\~l.27gC/m^{2}/day$ 범위에 평균 $0.62gC/m^{2}/day$로 나타났다 9월에 1.12gC/m^{2}/day$의 높은 값을 나타낸 이후 점차 감소하기 시작하여 2월에 0.19gC/m^{2}/day$의 최소 값을 나타내었으며, 봄철로 접어들면서 점차 증가하는 양상을 보였고, 5월에 $1.27gC/m^{2}/day$의 최대 값을 나타내었다.

Keywords

References

  1. Brown, G.T. and J.J. Delfino. 1980. Sediment oxygen demand techniques: A review and comparisons of laboratory and ln situ systems. Water Research, 14, 491-499 https://doi.org/10.1016/0043-1354(80)90215-8
  2. Brown, J.R. and E.B. Hartwick. 1988. Influences of temperature, salinity and available food upon suspended culture of the Pacific oyster, Crassostrea gigas. II. Condition index and survival. Aquaculture, 70, 253-267 https://doi.org/10.1016/0044-8486(88)90100-7
  3. Carver, C.E.A. and A.L. Mallet. 1990. Estimating the carrying capacity of a coastal inlet for mussel culture. Aquaculture, 88, 39-53 https://doi.org/10.1016/0044-8486(90)90317-G
  4. Cho, E.I., C.K. Park and S.M. Lee. 1996. Estimation of carrying capacity in Kamak Bay (l) - Estimation of primary productivity using the eco-hydrodymamic model. J. Korean Fish. Soc., 29, 369-385 (in Korean)
  5. Choi, W.J., C.K. Park and S.M. Lee. 1994. Numerical simulation of the formation of oxygen deficient water masses in Jinhae Bay. J. Korean Fish. Soc., 27, 413-433 (in Korean)
  6. Choi, W.J., Y.Y. Chun, J.H. Park and Y.C. Park. 1997. The influence of environmental characteristics on the fatness of Pacific oyster, Crassostrea gigas, in Hansan-Koje Bay, 30, 794-803 (in Korean)
  7. Incze, L.S. and R.A Lutz. 1981. Modeling carrying capacities for bivalve molluscs in open, suspended-culture systems. J. World Maricul. Soc., 12, 143-155
  8. Jo, J.S. 1988. Primary Productivity and Nurtient Dynamics in Chunsu Bay, Yellow Sea. MS thesis, Inha University, 65pp. (in Korean)
  9. Jung, K.H. and Y.C. Park. 1988. Primary production and nitrogen regeneration by macrozooplankton in the Kyunggi Bay, Yellow Sea. J. Oceanol. Soc. Korea, 4, 194-206 (in Korean)
  10. Kim, D.S. 1976. The result of tidal current observation in the Chung-mu hang approaches. Technical Reports, Hydrographic Officer, ROK., Pub., 1101, 147-172 (in Korean)
  11. Kobrentz-Mishke, O.I. 1967. Primaiy production. In Tychyi okean. Biologia Tychogo okean, Vol. 1, V.G. Kort, ed. Nauka, Moscow, pp. 86-97 (in Russian)
  12. Kusuki, Y. 1977. Fundamental studies on the deterioration of oyster growing grounds. II. Organic content of faecal materials. Bull. Jpn. Soc. Sci. Fish., 43, 167-171 (in Japanese) https://doi.org/10.2331/suisan.43.167
  13. Kusuki, Y. 1978. Relationship between quantities of faecal material produced and of the suspended matter removed by the Japanese oyster. Bull. Jpn. Soc. Sci. Fish., 44, 1183-1185 (in Japanese) https://doi.org/10.2331/suisan.44.1183
  14. Lee, B.D., K.K. Kang and Y.J. Kang. 1991. Primary production in the oyster farming bay. Bull. Korean Fish. Soc., 24, 39-51 (in Korean)
  15. NFRDI. 1983. A comprehensive study on marine pollution for the conservation of the Korean coastal ecosystem with respect to culture areas and fishing grounds. Technical Report of National Fisheries Research and Development Institute, 58, 252pp. (in Korean)
  16. NFRDI. 1985a. Manual of methods for research and monitoiing of marine pollution and red tide. National Fisheries Research and Development Institute, Korea, 297pp. (in Korean)
  17. NFRDI. 1985b. A comprehensive study on marine pollution for the conservation of the Korean coastal ecosystem with respect to culture areas and fishing grounds. Technical Report of National Fisheries Research and Development Institute, 63, 432pp. (in Korean)
  18. NFRDI. 1989. A comprehensive study on marine pollution for the conservation of the Korean coastal ecosystem with respect to culture areas and fishing grounds. Technical Report of National Fisheries Research and Development Institute, 84, 347pp. (in Korean)
  19. NFRDI. 1996b. Environmental survey to assess the water quality of the Korean coastal areas (1989-1994), National Fisheries Re-search and Development Institute, Korea, 255pp. (in Korean)
  20. NFRDI. 1997. Studies on the bad seed collection in oyster growing area and investigation of the new oyster seed collection area. National Fisheries Research and Development Institute, Korea, 226pp. (in Korean)
  21. Park, J.S. 2001. Estimating the carrying capacity for oyster culture grounds using an eco-hydrodynamic model. Ph. D. thesis, Pu-kyong National University, 142pp. (in Korean)
  22. Pazos, A.J., G. Rom$\'{a}$n, C.P. Acosta, M. Abad and J.L. S$\'{a}$nchez. 1997. Seasonal changes in condition and biochemical composition of the scallop Pecten maximus L. from suspended culture in the Ria de Arousa (Galicia, N.W. Spain) in relation to environmental conditions. J. Exp. Mar. Biol. Ecol., 211, 169-193 https://doi.org/10.1016/S0022-0981(96)02724-4
  23. Rodhouse, P.G., C.M. Roden, G.M. Burnell, M.P. Hensey, T. McMahon, B. Ottway and T.H. Ryan. 1984. Food resource, gameto-genisis and growth of Mytilus edulis on the shore and in suspended culture: Killary Harbour, Ireland. J. Mar. Biol. Assoc. U.K., 64, 513-529 https://doi.org/10.1017/S0025315400030204
  24. Ryther, J.H. 1969. Photosynthesis and fish production in the sea. Science, 166, 72-76 https://doi.org/10.1126/science.166.3901.72
  25. Sharp, J.H. 1974. Improved analysis for particulate organic carbon and nitrogen from seawater. Limnol. Oceanogr., 19, 984-979 https://doi.org/10.4319/lo.1974.19.6.0984
  26. Telek, G. and N. Marshall. 1974. Using a CHN analyzer to reduce carbonate interference in particulate organic carbon analysis. Mar. Biol., 24, 219-221 https://doi.org/10.1007/BF00391896
  27. Uye, S.H., H. Kuwata and T. Endo. 1987. Standing stocks and production rates of phytoplankton and planktonic copepods in the Inland Sea of Japan. J. Oceanol. Soc. Japan, 42, 421-434
  28. Wildsh, D.J. and D.D. Knstmanson. 1984. Importance to mussels of the benthic boundary layer. Can. J. Fish. Aquat. Sci., 41, 1618-1625 https://doi.org/10.1139/f84-200
  29. Yoo, S.K., J.S. Park, P. Chin, D.S. Chang, K.B. Lim, C.K. Park, S.Y. Hong, C.H. Cho, J.S. Hue, S.S. Lee, P.A. Kang, K.Y. Park, M.S. Lee and Y. Kim. 1980. Comprehensive studies on oyster culture in Hansan, Geoje Bay. Bull. Fish. Res. Dev. Agency, 24, 7-46 (in Korean)
  30. 거제시. 1995. 산양천 부천천 오수천 하천정비기본계획, pp. 19-42
  31. 거제시. 1997. 사등천 간덕천 오랑천 하천정비기본계획, pp. 26-32
  32. 국립수산과학원. 1996c. 어장환경 오염조사. 1995년도 수진사업보고, pp. 62-73
  33. 국립수산과학원. 1998. 남해연안 해양오염 및 적조조사. 남해수산연구소 사업보고, pp. 73-119
  34. 국립수산과학원. 1999. 남해연안 해양오염 및 적조조사. 남해수산연구소 사업보고, pp. 84-145
  35. 수로국. 1992. 해도 No. 208
  36. 한국해양연구소, 1996. 한반도 주변 조석 조화상수 자료집. 한국해양연구소, pp. 275-282
  37. 해양수산부. 1997. 해양환경공정시험방법. 해양수산부, 317pp
  38. 楠木豊. 1986. ニ枚貝の適正收容力硏究について. 廣島縣水産試驗場, 指定調査總合助成 事業報告書, pp. 1-8
  39. 細見正明. 順藤陵一. 1984. 底泥からの窒素と燐の溶出について. 國立公害硏究所年報, 51, 195-216
  40. 日本水産資源保護協會. 1983. 水産用水基準. 日本水産資資保護協會, 29pp
  41. 日本通商産業省 (MITI). 1991. 兵名潮 磐田地域産業公害總合事前調査-兵名潮の部- 水質豫測シミュレ-ション報告書(案). 通商産業省 立地公害局 工業技術院 資源環境技術硏究所. 80pp

Cited by

  1. The Characteristic of Long Term Variation of the Water Quality from Hansan-Geoje bay, Korea vol.16, pp.3, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.3.189
  2. 수질관리를 위한 시화호의 환경용량 산정 vol.16, pp.5, 2002, https://doi.org/10.5322/jes.2007.16.5.571