DOI QR코드

DOI QR Code

Comparison of Blood Physiology in Juvenile Black Seabream (Acanthopagrus schlegeli) Reared in Converted Freshwater from Seawater and Seawater from Freshwater

해수사육에서 담수사육으로, 담수사육에서 해수사육으로 전환된 감성돔 치어, Acanthopagrus schlegeli의 혈액생리학적 비교

  • Chang Young Jin (Department of Aquaculture, Pukyong National Univerity) ;
  • Min Byung Hwa (Department of Aquaculture, Pukyong National Univerity) ;
  • Chang Hae Jin (Department of Aquaculture, Pukyong National Univerity) ;
  • Hur Jun Wook (Department of Aquaculture, Pukyong National Univerity)
  • 장영진 (부경대학교 수산과학대학 양식학과) ;
  • 민병화 (부경대학교 수산과학대학 양식학과) ;
  • 장해진 (부경대학교 수산과학대학 양식학과) ;
  • 허준욱 (부경대학교 수산과학대학 양식학과)
  • Published : 2002.11.01

Abstract

Comparison of blood properties in juvenile black seabream (Acanthopans schlegeli) between transfer from seawater to freshwater (sFW) and transfer from freshwater to seawater (fSW) were investigated for 60 days. Plasma cortisol levels in sFW were significantly increased from 34.2 $\pm$ 28.6 ng/mL at the beginning to 365.6 $\pm$ 136.0 ng/mL at 3 hours, and decreased to the beginning level at 24 hours. However, in fSW, no significant differences in the cortisol levels were recognized throughout experimental period. No significant difference was found in the glucose levels between sFW and fSW. The transfer from seawater to freshwater of juvenile black seabream resulted in reduced $Na^{+}\;and\; Cl^{-}$ concentrations for 24 hours (decreasing from 165.3 $\pm$ 2.5, 146.0$\pm$ 2.2 to 118.3 $\pm$ 12.3, 78.0$\pm$ 7.0 mEq/L, respectively), but these were completely recovered the beginning levels at 30 days. Total protein and AST showed no significant differences between the two rearing conditions, while ALT was markedly elevated at 3 hour in sFW and at 24 hours in fSW. Ht in sFW was increased from 18.5 $\pm$ $0.6\%$ at the beginning to 25.3 $\pm$ $4.0\%$ at 12 hours, and was decreased to the beginning level at 24 hours. Ht, RBC and Hb in fSW were also significantly higher at 12 hours, but recovered to their initial levels at 24 hours. All fish were dead until 50 days in sFW while survival rate in fSW was $85\%$ at the end of experiment.

해산어류의 담수순화 양식을 위한 기초자료를 얻고자, 감성돔을 즉시 해수에서 담수로 (sm구), 담수에서 해수로 (fSW구) 전환하였을 때의 혈액 생리학적 변화를 비교하였다. Cortisol의 농도는 sFW구에서 실험개시시에 34.2$\pm$28.6ng/mL였던 것이 3시간째에 365.6$\pm$ 136.0ng/mL로 급격하게 증가하였다가 24시간째에 실험개시시 수준으로 회복되었다. fSW구에서는 실험기간동안 유의한 차이를 보이지 알았다. 글루코스 농도는 두 실험구에서 실험기간동안 유의한 차이는 없었다 혈장 $Na^{+}, Cl^{-}$은 sm구에서 실험개시시에 각각 165.3$\pm$2.5 mEq/L, 146.0$\pm$2.2mEq/L였던 것이 3시간째에 118.3$\pm$ 12.3mEq/L, 78.0$\pm$7.0mEq/L로 감소하였다가 30일째에 실험개시시 수준으로 회복되었다. 총 단백질량과 AST는 두 실험구에서 실험기간동안 유의한 차이가 없었다. ALT는 sFW구에서는 3시간째, fSW구에서는 24시간째부터 증가하기 시작하여 30일째에는 모두 실험개시시 수준으로 회복되었다. Ht는 sFW구에서 실험개시시에 18.5$\pm$$0.6\%$로부터 12시간째 25.3$\pm$$4.0\%$로 증가하였고, 24시간 이내에 실험개시시 수준으로 회복되었다. fSW구에서는 Ht, RBC, Hb가 12시간째부터 증가하여, 24시간 이내에 모두 실험개시시 수준으로 회복되었다. 생존율은 sn구에서 5일째 $25\%$로 급격히 낮아진 다음 50일째에 $0\%$를 나타냈으며, fSW구에서는 실험종료시에 $85\%$의 높은 생존율을 보였다.

Keywords

References

  1. Barton, B.A. and G.K. Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis., 1, 3-26 https://doi.org/10.1016/0959-8030(91)90019-G
  2. Barton, B.A., R.E. Peter and C.R. Paulencu. 1980. Plasma cortisol levels of fingerling rainbow trout (Salmo gairdneri) at rest, and subjected to handling, confinement, transport and stocking. Can. J. Fish. Aquat. Sci., 37, 805-811 https://doi.org/10.1139/f80-108
  3. Chang, Y.J. and J.W. Hur. 1999. Physiological responses of grey mullet (Mugil cephalus) and Nile tilapia (Oreochromis niloticus) by rapid changes in salinity of rearing water. J. Korean Fish. Soc., 32, 310-316 (in Korean)
  4. Davis, K.B. and N.C. Parker. 1990. Physiological stress in striped bass: Effect of acclimation temperature. Aquaculture, 91, 349-358 https://doi.org/10.1016/0044-8486(90)90199-W
  5. Donaldson, E.M. 1981. The pituitary-interrenal axis as an indicator of stress in fish. Academic Press, London, 11-47
  6. Einarsdottir, I.E. and K.J. Nilssen. 1996. Stress responses of Atlantic salmon (Salmo salar L.) elicited by water level reduction in rearing tanks. Fish Physiol. Biochem., 15, 395-400 https://doi.org/10.1007/BF01875582
  7. Fontainhas-Fernandes, A., F. Russell-Pinto, E. Gomes, M.A. Reis Henriques and J. Coimbra. 2001. The effect of dietary sodium chloride on some osmoregulatory parameters of the teleost, Oreochromis niloticus, after transfer from freshwater to seawater. Fish Physiol. Biochem., 23, 307-316 https://doi.org/10.1023/A:1011156806524
  8. Foo, J.T.W. and T.J. Lam. 1993. Serum cortisol response to handling stress and the effect of cortisol implantation on testosterone level in the tilapia, Oreochmmis mossambicus. Aquaculture, 115, 145-15 https://doi.org/10.1016/0044-8486(93)90365-6
  9. Lasserre, P., G. Boeuf and Y. Harache. 1978. Osmotic adaptation of Oncorhynchus kisutch Walbaum. 1. Seasonal variations of gill $NA^+$, $K^+$-ATPase activity in coho salmon, $0^+$ https://doi.org/10.1016/0044-8486(78)90019-4
  10. Laurent, P. and S. Kunel. 1980. Morphology of gill epithelia in fish. Am. J. Physiol., 238, 147-159
  11. Maina, J.N. 1990. A study of the morphology of the gills of an extreme alkalinity and hyperosmotic adapted teleost Oreochromis alcalicus, grahami (Boulenger) with particular emphasis on the ultrastructure of the chloride cells and their modifications with water dilution. A SEM and TEM study. Ana. Embryol., 181, 83-98
  12. Mazeaud, M., F. Mazeaud and E.M. Donaldson. 1977. Primary and secondary effects of sterss in fish: Some new data with a general review. Trans. Am. Fish. Soc., 106, 201-212 https://doi.org/10.1577/1548-8659(1977)106<201:PASEOS>2.0.CO;2
  13. Morgan, J.D. and G.K. Iwama. 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow trout and steel head trout (Oncorhyachus mykiss) and fall chinook salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci., 48, 2083-2094 https://doi.org/10.1139/f91-247
  14. Perry, S.F. and S.D. Reid. 1993. $\beta$-adrenergic signal transduction in fish: interactive effects of catecholamines and cortisol. Fish Physiol. Biochem., 11, 195-203 https://doi.org/10.1007/BF00004567
  15. Pickering, A.D. and T.G. Pottinger. 1989. Stress responses and disease resistance in salmonid fish: Effects of chronic elevation of plasma cortisol. Fish Physiol. Biochem., 7, 253-258 https://doi.org/10.1007/BF00004714
  16. Robertson, L., P. Thomas, C.R. Arnold and J.M. Trant. 1987. Plasma cortisol and secondary stress responses of red drum to handling, transport, rearing density, and disease outbreak. Prog. Fish-Cult., 49, 1-12 https://doi.org/10.1577/1548-8640(1987)49<1:PCASSR>2.0.CO;2
  17. Schreck, C.B. 1982. Stress and rearing of salmonids. Aquaculture, 28, 241-249 https://doi.org/10.1016/0044-8486(82)90026-6
  18. Singley, J.A. and W. Chavin. 1971. Cortisol levels of normal goldfish, Carassms awatus L., and response to osmodc change. Am. Zool., 11, 653pp
  19. Specker, C.B., C.S. Bradford, M.S. Fitzpatrick and R. Patino. 1989. Regulation of the interrenal of fishes: Non-classical control mechanism. Fish Physiol. Biochem., 7, 259-265 https://doi.org/10.1007/BF00004715
  20. Tsuzuki, M.Y., K. Ogawa, CA. Strussmann, M. Maita and F. Takashima. 2001. Physiological responses during stress and subsequent recovery at different salinities in adult pejerrey Odontesthes bonariensis. Aquaculture, 200, 349-362 https://doi.org/10.1016/S0044-8486(00)00573-1
  21. Wedemeyer, G.A. and D.J. McLeay. 1981. Methods for determining the tolerance of fishes to environmental stressors. In Stress and Fish (Ed. by A.D. Pickering), Academic Press, London, 247-275
  22. Wedemeyer, G.A. and W.T. Yasutake. 1977. Clinical methods for the assessment of the effects of environmental stress on 6sh health. U.S. Fish and Wildlife Service Technical Paper, 89, 18pp. Washington D.C
  23. 池田彌生, 尾崎久雄, 瀨崎哲次郎. 1986. 魚類血波圖鑑. 緣書扉, 東京, 361pp

Cited by

  1. Gene Expression Levels of Growth Hormone, Prolactin and Their Receptors of Olive Flounder Paralichthys olivaceus by Salinity Changes vol.39, pp.4, 2006, https://doi.org/10.5657/kfas.2006.39.4.326
  2. Changes of Serum Chemistry Values on Size and Cultured Method in Korean Rockfish, Sebastes schlegeli vol.26, pp.4, 2014, https://doi.org/10.13000/JFMSE.2014.26.4.695
  3. Effect of Salinity on Survival, Oxygen Consumption and Blood Physiology of Korean Rockfish Sebastes schlegelii vol.36, pp.2, 2014, https://doi.org/10.4217/OPR.2014.36.2.135
  4. Expression of warm temperature acclimation-related protein 65-kDa (Wap65) mRNA, and physiological changes with increasing water temperature in black porgy,Acanthopagrus schlegeli vol.a309, pp.4, 2008, https://doi.org/10.1002/jez.449
  5. 급격한 염분변화에 따른 담수어 3종의 프로락틴 및 성장호르몬 유전자 발현변화 vol.41, pp.1, 2008, https://doi.org/10.5657/kfas.2008.41.1.001
  6. Environmental stress-related gene expression and blood physiological responses in olive flounder (Paralichthys olivaceus) exposed to osmotic and thermal stress vol.14, pp.1, 2002, https://doi.org/10.1080/19768351003764940