The Strong Consistency of Regression Quantiles Estimators in Nonlinear Censored Regression Models

  • Choi, Seung-Hoe (Department of General Studies, Hankuk Aviation University)
  • Published : 2002.04.30

Abstract

In this paper, we consider the strong consistency of the regression quantiles estimators for the nonlinear regression models when dependent variables are subject to censoring, and provide the sufficient conditions which ensure the strong consistency of proposed estimators of the censored regression models. one example is given to illustrate the application of the main result.

Keywords

References

  1. Communication in Statistics v.23 Consistency of $L_1$ Estimates in Censored Linear Regression Models Chen, X. R.;Wu, Y.
  2. Journal of the Korean Statistical Society v.27 Asymptotic Properties of LAD Estimators in Censored Nonlinear Regression Model Choi, S. H.;Kim, H. K.
  3. Journal of the Korean Statistical Society v.30 Nolinear regression quantiles estimation Choi, S. H.;Kim, H. K.;Park, K. O.
  4. Nonparametric Statistics v.3 Regression quantiles and trimmed least squares estimators in nonlinear regression model Jureckova, J.;Prochazka, B.
  5. Econometrica v.46 Regression Quantiles Koenker, R.;Bassett, G.
  6. Journal of Multivariate Analysis v.50 Asymptotic behavior of regression quantiles in non-stationary dependent cases Portnoy, S.
  7. Journal of Econometrics v.25 Least Absolute Deviation Estimation for the Censored Regression Model Powell, J. L.
  8. Journal of Econometrics v.32 Censored regression quantiles Powell, J. L.
  9. Journal of Multivariate Analysis v.54 Asymptotic normality of $L_1$-estimators in nonlinear regression Wang, J.
  10. The Annals of Statistics Asymptotic theory of nonlinear least squares estimation Wu, C. F.