The effect of dexamethasone on the gene expression of the bone matrix protein in the periodontal ligament cells

치주인대세포의 골기질 단백질 유전자 발현에 대한 Dexamethasone의 영향

  • Chung, Ha-Bong (Department of Periodontology College of Dentistry Kyungpook National University) ;
  • Park, Jin-Woo (Department of Periodontology College of Dentistry Kyungpook National University) ;
  • Suh, Jo-Young (Department of Periodontology College of Dentistry Kyungpook National University)
  • 정하봉 (경북대학교 치과대학 치주과학교실) ;
  • 박진우 (경북대학교 치과대학 치주과학교실) ;
  • 서조영 (경북대학교 치과대학 치주과학교실)
  • Published : 2002.09.30

Abstract

The purpose of this study were to determine that dexamethasone(Dex) induces differentiation of periodontal ligament(PDL) cells to osteoblastic cells and to investigate expression of matrix Gla protein(MGP), which is one of bone matrix protein. The isolated human PDL cells and gingival fibroblasts were prepared and cultured. The fourth or sixth sub-passage cells were used in this experiments. control group, ascorbic acid and ${\beta}$-glycerophosphate treated group, ascorbic acid, ${\beta}$-glycerophosphate and l00nM Dex treated group, ascorbic acid, ${\beta}$-glycerophosphate, and 5 ${\mu}M$ Dex treated group were made for study. The results were as follows: Cellular morphological change of PDL cells according to time was investigated. At first, the cells exhibited confluent monolayer of spindle or polygonal appearance. The multilayer of cells were seen after 7 days of treatment. After 14 days, the cells lost polarity and were densely packed. The mineralized nodule formation was seen at 21 days in the only Dex treated PDL cell groups. In the gingival fibroblast groups and no Dex treated PDL cell groups, the mineralized nodule was not seen. The mineralized nodule formation of 5 ${\mu}M$ Dex treated group was higher than 100 nM Dex treated group. Alkaline phosphatase(ALP) activity was higher in the Dex treated PDL cell groups of 14 and 21 days than 0 and 7 days. MGP was expressed in the control and all experimental groups and the expression was constant at 0,7,14,21 day. The above results confirm that Dex is affected to differentiation of the PDL cells to osteoblastic or cementoblastic cells and has dose-dependent effect for mineralization. And, MGP is expressed in the PDL cells and is not affected to mineralization of PDL cells.

치주조직 재생을 위해서는 새로운 백악질과 치조골 그리고, 치주인대의 재생이 필요하며, 이러한 재생을 담당할 세포의 분화가 필수적이다. 이러한 분화를 담당하는 것은 치주인대세포이며, 이 중 골아세포의 분화가 중요하다. 본 실험의 목적은 치주조직 재생에 있어서 중요한 요소인 치주인대세포의 골아세포성 세포로의 분화를 관찰하며, Dex가 광물화에 미치는 영향과 농도에 따른 차이를 알아보고자 시행하였다. 또한, 광물화시 발현되는 여러 골기질 단백질 중 Matrix GlaProtein의 발현양상도 관찰하였다. 교정치료를 목적으로 내원한 환자의 제1소구치 부위의 정상치은을 절제하고, 건강한 제1소구치를 발거하여 치은섬유아세포와 치주인대세포를 분리, 배양하여, ascorbic acid와 ${\beta}$-glycerophosphate 투여군을 실험1군, ascorbic acid, ${\beta}$-glycerophosphate, Dex 100nM 투여군을 실험 2군, ascorbic acid, ${\beta}$-glycerophosphate, Dex $5{\mu}M$ 투여군을 실험3군, 그리고, 단순 배양만 시킨군을 대조군으로 하여 비교하였다. 시간경과에 따른 치주인대세포 형태의 변화 양상은 초기에 방추형 혹은 다각형의 단일층 형태에서 7일경에는 세포 크기와 수가 증가하여 복합층 형태로 변화했으며, 배양 14일 이후에는 세포들의 방향성이 없어지고, 더욱 치밀해 졌다. 골 결절형성은 치주인 대세포의 Dex 투여군에서만 21일째에 나타났으며, $5{\mu}M$ 투여군에서 100nM 투여군보다 더 많이 나타났다. ALP 활성도를 비교해보면 치주인대세포에서 0, 7일 경에는 활성도를 보이지 않았으며, 14일경에 높은 활성도롤 나타냈으며, 21일에도 비슷한 활성도를 유지하였다. MGP 유전자 발현 양상은 대조군과 실험군 모두에서 Matrix Gla Protein에 대한 유전자의 발현이 나타났으며,그 발현양상은 모든 시기에서 일정하였다. 이상의 결과로 보아 치주인대세포는 골아세포로의 분화가 가능하며, Dex는 농도의존적으로 광물화에 영향을 미치는 것으로 사료된다. 그리고, MGP는 치주인대세포에서 발현이 감지되었으며, 광물화에는 영향을 미치지 않는 것으로 사료된다.

Keywords

References

  1. Arceo, N., Sauk, J. J., Moehring, J., Foster, R. A., and Somennan, M.J. : Human Periodontal Cells Initiate Mineral-Like Nodules In Vitro, J. Periodontol., 62 : 499-503, 1991 https://doi.org/10.1902/jop.1991.62.8.499
  2. Nohutcu R. M., Somennan M. J., and McCauley L. K. : Dexamethasone enhances the effects of parathyroid hormone on human periodontalligament cells in vitro, Calcif. Tissue Int., 56: 571-577, 1995 https://doi.org/10.1007/BF00298592
  3. Nojima, N., Kobayashi, M., Shinome, M., Takahashi, N., Suda, T. and Hasegawa, K. : Fibroblastic cells derived from the bovine periodontal ligaments have the phenotypes of osteoblasts, J. Periodont. Res., 25 : 179-185, 1990 https://doi.org/10.1111/j.1600-0765.1990.tb01041.x
  4. Somennan, M. J., Archer, S. Y., Imrn, G. R., and Foster R. A. : A comparative study of human periodontal ligament cells and gingival fibro blasts in vitro, J. Dent. Res., 67 : 66-70, 1988 https://doi.org/10.1177/00220345880670011301
  5. Cho, M. I., Matsuda, N., Lin, W. L., Moshier, A., and Ramakrishnan, P, R. : In Vitro Formation of Mineralized Nodules by Periodontal Ligament Cells from the Rat, Calcif. Tissue Int., 50: 459-467, 1992 https://doi.org/10.1007/BF00296778
  6. Pitarus, S., McCulloch, C. A. G., and Narayanan, S. A. : Cellular origins and differentiation control mechanism during periodontal ligament devel opment and wound healing, J. periodont. Res., 29 : 81-94, 1994 https://doi.org/10.1111/j.1600-0765.1994.tb01095.x
  7. Mukai, M., Yoshimine, Y., Akamine, A., and Maeda, K. : Bone-like nodules formed in vitro by rat periodontal ligament cells, Cell. Tissue Res., 271: 453-460, 1993 https://doi.org/10.1007/BF02913727
  8. Bhargava, U., Bar-Lev, M., Bellows, C. G. and Aubin, J. E. : Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria, Bone, 9: 155-163, 1988 https://doi.org/10.1016/8756-3282(88)90005-1
  9. Ramakrishnan, P. R., Lin, W. -L., Sadek, J., and Cho, M. I. : Synthesis of non-collagenous extracellular matrix proteins during development of mineralized nodules by rat periodontal ligament cells in vitro, Calcif. Tissue Int., 57: 52-59, 1995 https://doi.org/10.1007/BF00298997
  10. Nohutcu, R. M., McCauley, L. K., Shigeyama, Y., and Somennan, M. J. : Expression of mineralassociated proteins by periodontal ligament cells: in vitro vs, ex vivo, J. Periodont. Res., 31: 369-372, 1996 https://doi.org/10.1111/j.1600-0765.1996.tb00505.x
  11. Chung, C. H., Golub, E. E., Forbes, E., Tokuoka, T., and Shaporo, I. M. : Mechanism of Action of $\beta$GP on Bone Cell Mineralization, Calcif Tissue Int., 51: 305-311, 1992 https://doi.org/10.1007/BF00334492
  12. Tenenbaum, H. C. : Role of organic phosphate in mineralization of bone in vitro, J. dent. Res., 60 : 1586-1589, 1981 https://doi.org/10.1177/002203458106000308011
  13. Tenenbaum, H. C., and Heersche, J. N. M, : Levamisole and inorganic pyrophosphate inhibit $\beta$glycerophosphate-induced mineralization of bone formed in vitro, Bone Miner., 3: 13-26, 1987
  14. Ecarot-Charrier, B., and Glorieux, F. H., Van Der Rest, M., Pereira, G. : Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture, J. Cell. BioI., 96 : 639-643, 1983 https://doi.org/10.1083/jcb.96.3.639
  15. Kodama, H, A., Arnagai,Y., Sudo, H., Ohno, T., and Iijima, K. I. : Culture conditions affecting differentiation and calcification in the MC3T3-E1 osteogenic cell line, In: Ali SY (ed) Cell-Mediated calcification and matrix vesicles. Elsevier Science Publishers B. V., pp 297-302, 1986
  16. Salhanick, A. I., Krupp, M. N., and Amatruda, J. M. : Dexamethasone stimulate insulin receptor synthesis in cultured rat hepatocytes, J. Biol, Chem., 258: 14130-14135, 1983
  17. Invanovic, V., and Weinstein, I. B., Glucocorticoids and benzopyrene have opposing effects on EGF receptor binding. Nature, 293 : 404-406, 1981 https://doi.org/10.1038/293404a0
  18. Kasugai, S., Todescan, R., Nagata, T., Yao, K-L., Butler, W, T., and Sadek : Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro : Inductive effects of dexamethasone on the osteoblastic phenotype, J. Cell. Physiol, 147: 111-120, 1991 https://doi.org/10.1002/jcp.1041470115
  19. Baylink, D. J. Glucocorticoid-induced osteoporosis. N. Engl. J. Med., 309: 306-308, 1983 https://doi.org/10.1056/NEJM198308043090509
  20. Burckhardt, P. Corticosteroid and bone: A review. Hormone Res., 20: 59-64, 1984 https://doi.org/10.1159/000179975
  21. Bellows, C. G., Heersche, J. N. M., and Aubin, J. E. : Determination of the capacity for proliferation and differentiation of osteoprogenitor cells in the presence and absence of dexamethasone. Dev, BioI., 140: 132-138, 1990 https://doi.org/10.1016/0012-1606(90)90060-V
  22. Dietrich, J. W., Canalis, E., Maina, D. M., and Raisz, L. G. : Effects of glucocorticoids on fetal rat bone collagen synthesis in vitro. Endocrinology, 104: 715-721, 1979 https://doi.org/10.1210/endo-104-3-715
  23. Rickard, D. J., Sullivan, T. A., Shenker, T. A., Leboy, P, S., and Kazhdan, I. : Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev, Biol, 161: 218-228, 1994 https://doi.org/10.1006/dbio.1994.1022
  24. Chen, J., Sodek, J., Thomas, H, F., and Ranly, D. M. : Dexamethasone Stimulates Luciferase gene expression through the rat bone sialopro- tein gene promoter in transgenic mice. Connect. Tissue Res., 4: 33-9, 1996
  25. Mori, K., Shioi, A., Jono, S., Nishizawa, Y., and Morii, H, : Dexamethasone enhances in vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells. Arterioscler. Thromb, Vasc. BioI., 19: 2112-2118, 1999 https://doi.org/10.1161/01.ATV.19.9.2112
  26. Nohutcu, R. M., McCauley, L. K., Koh, A. J.,and Somerman, M. J. : Expression of Extracellular Matrix Proteins in Human Periodontal ligament Cells During Mineralization In Vitro. J. Periodontol., 68: 320-327, 1997 https://doi.org/10.1902/jop.1997.68.4.320
  27. Chien, H. H., Lin, L, W., and Cho, M. I. : Expression of TGF- $\beta$ isoforms and their receptors during mineralized nodule formation by rat periodontal ligament cells in vitro. J. Periodont, Res., 34: 301-309, 1999 https://doi.org/10.1111/j.1600-0765.1999.tb02258.x
  28. Matsuura, M., Herr, Y., Han, K. Y., Un, W. L., Genco, R, J., and Cho, M. I, Immunohistochemical Expression of Extracellular Matrix Components of Normal and Healing Periodontal Tissues in the Beagle Dog. J. Periodontol, 66: 579-593, 1995 https://doi.org/10.1902/jop.1995.66.7.579
  29. Price, P. A., Urist, M. R., Otawara, Y. : Matrix Gla Protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem Biophys Res Commun., 117: 765-771, 1983 https://doi.org/10.1016/0006-291X(83)91663-7
  30. Ikeda, T., Nomura, S., Yamaguchi, A., Suda, T., Yoshiki, S, : In situ hybridization of bone matrix proteins in uncalcified adult rat bone sections. J Histochem Cytochem, 40: 1079-1088, 1992 https://doi.org/10.1177/40.8.1619274
  31. 서조영, 최제용, 유현모, 박준봉, 조준승 : 치주인대세포와 치은섬유아세포의 성상에 관한 비교, 대한구강생물학회지, 15 : 14-27, 1991
  32. Chomczynski, p., and Sacchi, N. : Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162: 156-159, 1990
  33. Cheng, S. L., Yang,J. W., Rifas, L., Zhang, S. F., and Avoli, L. V. : Differentiation of human bone marrow osteogenic stromal cells in vitro. : Induction of the osteoblast phenotype by dexamethasone. Endocrinology, 134: 277-286, 1994 https://doi.org/10.1210/en.134.1.277
  34. Krzysztof, H. W., Reddi, A. M. : Alkaline phosphatase as a marker of osteoinductive cells. Calcif. Tissue. Int., 39 : 382-385, 1986 https://doi.org/10.1007/BF02555175
  35. Stein, G. S., Lian, J. B., and Owen, T. A. : Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB. J., 4: 82-94, 1990
  36. Chen, J. K., Shapiro, H. S., Wrana, J. L., Reimers, S., Heersche, J, N., and Sodek, J. : Localization of Bone Sialoprotein(BSP) Expression to Sites of Mineralized Tissue Formation in Fetal Rat Tissues by In Situ Hybridization. Matrix, 11: 133-143,1991.
  37. Bianco, P., Fisher, L. W., Young, M. F., Termine.J, D., and Robey, P. G, : Expression of Bone Sialoprotein(BSP) in Developing Human Tissues. Calif Tissue Int., 49: 421-426, 1991 https://doi.org/10.1007/BF02555854
  38. Malaval, L., Modrowski, D., Gupta, A. K, and Aubin, J. E. : Cellular Expression of BoneRelated Proteins During In Vitro Osteogenesis in Rat Bone Marrow Stromal Cell Cultures. J. Cell. Physiol., 158: 555-572, 1994 https://doi.org/10.1002/jcp.1041580322
  39. Zaro, J., and Nishimoto, S.k. : Matrix Gla protein gene expression is elevated during postnatal development. Matrix Biol., 15:2 131-40, 1996 https://doi.org/10.1016/S0945-053X(96)90154-7
  40. Barone, L. M., Owen, T. A., Tassinari, M, S., Bortell, R., Stein, G. S., and Lian, J. B, : Developmental expression and hormonal regulation of the rat matrix Gla protein(MGP) gene in chondrogenesis and osteogenesis. J. Cell. Biochem., 46:4 351-65, 1991 https://doi.org/10.1002/jcb.240460410
  41. Luo, G., Ducy, P., McKee, M. D., Pinero, G. J., Loyer, E., Behringer, R. R., and Karsenty, G. : Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature, 386: 6620 78-81, 1997 https://doi.org/10.1038/386078a0
  42. Yagami, K, Sub, J.Y., Enomoto-Iwamoto, M., Koyama, E., Abrams, W. R., Shapiro, I. M., Pacifici,M., and Iwaoto, M, : Matrix GLA protein is a developmental regulator of chondrocyte mineralization and, when constitutively expressed, blocks endochondral and intramembranous ossification in the limb. J. Cell. Biol., 147: 5 1097-108, 1999 https://doi.org/10.1083/jcb.147.5.1097
  43. Lawton, D,M., Andrew, J. G., Marsh, D. R., Hoyland, J. A., and Freemont, A. J, : Expression of the gene encoding the matrix gla protein by mature osteoblasts in human fracture nonunions, J. Mol. Pathol., 52: 2 92-6, 1999 https://doi.org/10.1136/mp.52.2.92