The biological effects of fibronectin typeIII 7-10 to MC3T3-E1 osteoblast

Fibronectin type III 7-10 이 조골세포에 미치는 영향

  • Hong, Jeong-Ug (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Choi, Sang-Mook (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Han, Soo-Boo (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Chung, Chong-Pyoung (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Rhyu, In-Chul (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Lee, Yong-Moo (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Ku, Young (Department of Periodontology, College of Dentistry, Seoul National University)
  • 홍정욱 (서울대학교 치과대학 치주과학교실) ;
  • 최상묵 (서울대학교 치과대학 치주과학교실) ;
  • 한수부 (서울대학교 치과대학 치주과학교실) ;
  • 정종평 (서울대학교 치과대학 치주과학교실) ;
  • 류인철 (서울대학교 치과대학 치주과학교실) ;
  • 이용무 (서울대학교 치과대학 치주과학교실) ;
  • 구영 (서울대학교 치과대학 치주과학교실)
  • Published : 2002.03.30

Abstract

타이태늄은 뛰어난 생체적합성과 적절한 물리적 성질을 바탕으로 치과 및 정형외과 영역의 매식재로 널리사용되어져 왔으며, 골과 매식재 사이의 골 융합 정도를 증가시킬 목적으로 물리, 화학적인 방법을 이용한 타이태늄의 표면처리에 관한 많은 연구들이 진행되어 왔다. 최근에는 부착단백질 또는 성장인자를 이용한 생체재료의 표면개질을 통하여 조직적합성 및 치유 능의 개선을 위한 시도들이 있어왔다. Fibronectin(FN)은 주요 세포외기질중의 하나로 생체 내 널리 분포하여 세포의 부착, 이동 및 증식에 관여하는 거대 당단백으로, RGD및 PHSRN 펩타이드 서열이 세포의 인테그린과 결합하여 세포의 활성을 조절하는 것으로 알려져 있다. 이 연구에서는 FN으로 처리된 타이태늄이 조골세포의 부착, 증식 및 분화에 미치는 영향과 이에 따른 석회화 정도에 미치는 영향을 관찰하여 부착분자를 이용한 타이태늄 표면개질의 효과를 규명하고자 하였다. 상업용 순수 타이태늄을 gold thiol법을 이용하여 표면처리 후, 혈장 FN(plasma FN, pFN)과 유전자재조합법을 이용하여 얻은 FN조각(FN type III 7-10, FNIII 7-10)을 피복한 시편을 실험군으로, 아무런 처리를 하지 않은것(smooth surface, SS)과 산 부식(Sandblasted and acid etched, SLA)처리된것을 대조군으로 이용하였다. 배양된 조골세포주(MC3T3-E1)를 사용하여 타이태늄 표면 처리에 따른 세포의 증식, 형태변화, 알칼리성 인산분해효소(ALPase) 생산 및 세포면역형광법을 이용한 분화정도를 시간 경과에 따라 관찰하였다. 조골세포증식의 경우 FNIII 7-10 처리군에서 pFN 처리군 및 대조군에 비해 시간경과에 따라 유의성있는 세포수의 증식이 관찰되었으며(p<0.05), ALPase 생성의 경우에도 FNIII 7-10 처리 군에서 아무 처리도 하지 않은 군에 비해 유의성 있게 높은 효소의 생성이 관찰되었다(p<0.05). 주사전자현미경을 이용한 세포의 형태관찰결과 아무 처리도 하지 않은 군에서는 마름모형태를 나타내었으며, 산 부식 처리된 군에서는 세포가 가시모양의 형태를 보인 반면 FN으로 처리된 두 군에서는 세포의 부착 및 펴짐이 매우 발달되어 있는 모습이 관찰되었다. 세포의 분화정도를 관찰하기 위하여 국소부착키나제(focal adhesion kinase, FAK), 및 actin stress fiber의 분포양상을 세포면역형광법을 이용하여 관찰한 결과 FN으로 표면처리된 두 군에서 아무런 처리도 하지않은 군 및 산 부식처리 한 군에 비해 프라크의 발현이 높게 나타났으며 잘 발달된 actin stress fiber의 소견을 나타내었다. 이 실험의 결과들은 gold thiol 법을 이용한 표면처리 후 FN부착을 통한 타이태늄의 표면개질이 조골세포의 부착, 증식 및 분화에 중요한 역할을 담당하여 석회화 정도를 촉진시키는 것을 보여주었으며, 이런 결과들은 더 짧은 FN조각을 이용한 다른 생체재료의 표면개질에 폭 넓게 응용할 수 있으리라 생각된다.

Keywords

References

  1. Brighton CT, Albelda SM.: Identification of integrin cell-substratum adhesion receptors on cultured rat bone cells, J Orthop Res, 10:766-773, 1992 https://doi.org/10.1002/jor.1100100604
  2. Grzesik WJ, robey PG.: Bone matrix RGD glycoprotein: immunolocalization and interaction with human primary osteoblast bone cells in virto. J Bone Miner Res, 9(4):4870-4896, 1994
  3. Moursi AM, Globus RK, Damsky CH.: Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci, 110:2187-2196, 1997
  4. Saito T, Albelda SM, Brighton CT.: Identification of integrin receptors on cultured human bone cells. J Orthop Res, 12:384-394, 1994 https://doi.org/10.1002/jor.1100120311
  5. Puleo D, Bizios R.: RGDS tetra peptide binds to osteoblasts and inhibits fibronectin-mediated adhesion. Bone, 12(4):271-276, 1991 https://doi.org/10.1016/8756-3282(91)90075-T
  6. Romania A, Thomas C, Bringer A, Waters C, Healy K.: The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. J Boomed Mater Res, 37(1):9-19, 1997 https://doi.org/10.1002/(SICI)1097-4636(199710)37:1<9::AID-JBM2>3.0.CO;2-W
  7. Singhvi R, Kumar A, Lopez G.: Engineering cell shape and function. Science, 264(5159):696-698,1994 https://doi.org/10.1126/science.8171320
  8. Brandley B. Schnaar R.: Covalent attachment of an Arg-Gly-Asp sequence peptide to derivatizable polyacrylamide surfaces: support of fibroblast adhesion and long-term growth. Anal Biochem, 172(1):270-278, 1988 https://doi.org/10.1016/0003-2697(88)90442-3
  9. Rezania A. Healy KE.: Biomimetic peptide surfaces that regulate adhesion spreading cytoskeletal organization and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog, 15(1):19-32, 1999 https://doi.org/10.1021/bp980083b
  10. Dee KC, Anderson TT, Bizios R.: Osteoblast population migration characteristics on substrates modified with immobilized adhesive peptides. Biomaterials, 20(3):221-227, 1999 https://doi.org/10.1016/S0142-9612(98)00161-6
  11. Pierschbacher MD, Polarek JW, Craig WS, Tschopp JF, Sipes NJ, Harper JR.: Manipulation of cellular interactions with biomaterials toward a therapeutic outcome: a perspective. J Cell Biochem, 56(2):150-154, 1994 https://doi.org/10.1002/jcb.240560205
  12. Friedman RJ. Bauer TW, Gag K, Kiang M, Yuehuei H, Draughn RA.: Histological and mechanical comparison of hydroxyapatite-coated cobalt-chrome and titanium implants in the rabbit femur. J Appl Biomater, 6:231-235, 1995 https://doi.org/10.1002/jab.770060403
  13. Nimb L, Jensen JS, Gotfredsen K.: Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone. J Biomed Mater Res, 29:1477-1482, 1995 https://doi.org/10.1002/jbm.820291203
  14. Rashmir-Raven AM, Richardson DC, Aberman HM, DeYoung DJ.: The response of cancellous and cortical canine bone to hydroxyapatite-coated and uncoated titanium rods. J Appl Biomater, 6:237-242, 1995 https://doi.org/10.1002/jab.770060404
  15. Tisdel CL, Goldberg VM, Parr JA, Bensusan JS, Staikoff LS, Stevenson S.: The influence of a hydroxyapatite and tricalcium-phosphate coating on bone growth into titanium fiber-metal implants. J Bone Jt Surg, 76-A(2):159-171, 1994 https://doi.org/10.2106/00004623-199402000-00001
  16. Wong M, Eulenberger J, Schenk R, Hunziker E.: Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res, 29:1567-1575, 1995 https://doi.org/10.1002/jbm.820291213
  17. Sumner D.: Enhancement of bone ingrowth by transforming growth factor. J Bone Jt Surg, 77-A:1135-1147, 1995 https://doi.org/10.2106/00004623-199508000-00001
  18. Mrksich M, Chen C, Xia Y, Dike L, Ingber D, Whitesides G.: Controlling cell attachment on contoured surfaces with self-assembled monolayer of alkanethiolates on gold. Proc Natl Acad Sci USA, 93(20): 1075-1078, 1996
  19. Mrksich M, Whitesides G.: Using self-assembled monolayers to understand the interactions of man made surfaces with proteins and cells. Ann Rev Biophys Biome Struct, 25:55-78, 1996 https://doi.org/10.1146/annurev.bb.25.060196.000415
  20. Prime K, Whitesides G.: Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science, 252(5010):1164-1167, 1991 https://doi.org/10.1126/science.252.5009.1164
  21. Wink T, van Zuilen S, Bult A, van Bennkom W.: Self-assembled monolayers for biosensors. Analyst, 124(4):43-50, 1997
  22. Silin V, Weetall H, Vanderah D.: SPR Studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by selfassembled monolayers. J Colloid Interface Sci, 185(1):94-103, 1997 https://doi.org/10.1006/jcis.1996.4586
  23. Margel S, Vogler E, Firment L, Watt T, Haynie S, Sogah D.: Peptide protein and cellular interactions with self-assembled monolayer model surfaces. J Biomed Mater Res, 27(12):1463-1476, 1993 https://doi.org/10.1002/jbm.820271202
  24. Moodie GD, Sherling MA, Morgan H, Ferris DM, Chen Cy, Valentini RF.: Effects of peptide-immobilized gold surfaces on osteoblasts. 24th Annual Meeting of the Society for Biomaterials, 116, 1998
  25. Zou L, Moodie GD, Sherling MA, Keeping HS, Ehrlich MG, Valentini RF.: Immobilized RGD peptide modulates integrin and matrix protein gene in primary rat osteoblasts. Biomaterials, 161-164, 1998
  26. Fjjisawa R, Mizuno M, Nodasaka Y, Kuboki Y.: Attachment of osteoblastic cells to hydroxyapatite crystals by a synthetic peptide (Glu-Pro-Arg-Gly-Asp-Thr) containing two functional sequences of bone sialoprotein. Matrix Biol, 16(1):21-28, 1997 https://doi.org/10.1016/S0945-053X(97)90113-X
  27. Stubbs JT, Mint KP, Eanes ED, Torchia DA, Fisher LW.: Characterization of native and recombinant bone sialoprotein: delineation of the mineral-binding and cell adhesion domains and structural analysis of the RGD domain. J Bone Miner Res, 12(8):1210-1222, 1997 https://doi.org/10.1359/jbmr.1997.12.8.1210
  28. Dee KC, Andersen TT, Bizios R.: Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res, 40(3):371-377, 1998 https://doi.org/10.1002/(SICI)1097-4636(19980605)40:3<371::AID-JBM5>3.0.CO;2-C
  29. Grant RP, Spitzfaden C, Altroff H, Campbell ID, Mardon HJ.: Structural requirements for biological activity of the ninth and tenth FIII domains of human fibronectin. J Biol Chem, 272(10):6159-6166, 1997 https://doi.org/10.1074/jbc.272.10.6159
  30. Miyamoto S, Katz BZ, Lafrenie RM, Yamada KM.: Fibronectin and integrins in cell adhesion signaling and morphogenesis. Ann NY Acad Sci, 857: 119-29, 1998 https://doi.org/10.1111/j.1749-6632.1998.tb10112.x
  31. Vuori K, Ruoslahti E.: Association of insulin receptor substrate-1 with integrins. Science, 226:1576-1578, 1994
  32. Hunt TR, Schwappach JR, Anderson HC.: Healing of segmental defect in the rat femur with use of an extract from a cultured human osteosarcoma cell-line (Saos-2). J Bone Jt Surg [Am], 78:41-48, 1996 https://doi.org/10.2106/00004623-199601000-00006
  33. Burridge K, Turner CE, Romer LH.: Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol, 119:893-903, 1992 https://doi.org/10.1083/jcb.119.4.893
  34. Ingber DE, Dike L, Hansen L.: Cellular integrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol, 150:173-224, 1994 https://doi.org/10.1016/S0074-7696(08)61542-9
  35. Richard P. G, Claus S, Harri Altroff, Iain D. C. and Helen J. Mardon.: Structural Requirements for Biological Activity of the Ninth and Tenth FIII Domains of Human Fibronectin. 272(10):6159- 6166, 1997
  36. Sambra D. Redick, Daniel L. Settles, Gina Briscoe, and Harold P. Erickson.: Defining fibronectin's cell adhesion synergy site by sitedirected mutagenesis. J Cell Biol, 149(2):521-527, 2000 https://doi.org/10.1083/jcb.149.2.521
  37. Scofield JH.: Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom, 8:129, 1976 https://doi.org/10.1016/0368-2048(76)80015-1
  38. Vuento M, Vaheri A.: Purification of fibronectin from human plasma by affinity chromatography under non-denaturing conditions. Biochem J, 183:331-337, 1979 https://doi.org/10.1042/bj1830331
  39. Plow E, Ginshberg M. Specific and saturable binding of plasma fibronectin to thrombin-stimulated human platelets. J Biol Chem, 256:9477-9482, 1981
  40. Ugarova TP, Zamarron C, Veklich Y, Bowditch RD, Ginsberg MH, Weisel JW, Plow EF.: Conformational transitions in the cell-binding domain of fibronectin. Biochemistry, 34:4457-4466, 1995 https://doi.org/10.1021/bi00013a039
  41. Shuguang Zhang, Lin Yan, Michael Altman, Michael Lassle, Helen Nugent, Felice Frankel, Douglas A. Lauffenburger, George M. Alexander Rich.: Biological surface engineering: a simple system for cell pattern formation. Biomaterials, 20:1213-1220, 1999 https://doi.org/10.1016/S0142-9612(99)00014-9
  42. Xaoling Sur, Heather Sheardown, John L. Brash.: Peptide modified gold-coated-polyurethanes as thrombin scavenging surfaces. J Biomed Mater Res, 49:66-78, 2000 https://doi.org/10.1002/(SICI)1097-4636(200001)49:1<66::AID-JBM9>3.0.CO;2-X
  43. Nobes CD, Hall A.: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81:53-62, 1995 https://doi.org/10.1016/0092-8674(95)90370-4
  44. Nobes CD, Hall A.: Rho, rac, and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem Soc Trans, 23:456-459, 1995 https://doi.org/10.1042/bst0230456
  45. Olson MF, Ashworth A, Hall A.: An essential role for Rho, Rac, and CdC42 GTPases in cell cycle progression through G1. Science, 269:1270-1272, 1995 https://doi.org/10.1126/science.7652575
  46. McClary KM, Grainger DG.: RhoA-induced changes in fibroblasts cultured on organic monolayers. Biomaterials, 20:2435-2446, 1999 https://doi.org/10.1016/S0142-9612(99)00171-4
  47. Millan Mrksich, Christopher S. Chen, Younan xia, Laura E. Dike, Donald E. Ingber, and George M. Whitesides.: Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold Proc Natl Acad Sci, 93:10775-10778, 1976
  48. Kevin E. Healya.: Molecular engineering of materials for bioreactivity. Current Opinion in Solid State and Materials Science, 4:381-387, 1999 https://doi.org/10.1016/S1359-0286(99)00038-8
  49. R.L. Edelstein , C.R. Tamanaha , P.E. Sheehan, M.M. Miller , D.R. Baselt, L.J. Whitman , R.J. Colton.: The BARC biosensor applied to the detection of biological warfare agents. Biosensors & Bioelectronics, 14:805-813, 2000 https://doi.org/10.1016/S0956-5663(99)00054-8
  50. Richard P.Grant, Claus Spitzfaden, Harri Altroff, Iain D. Campbell, and Helen J. Mardon. Structural Requirements for Biological Activity of the Ninth and Tenth FIII Domains of Human Fibronectin Vol 272, No. 10, Issue of March 7:6159-6166, 1997
  51. Mariko Hashimoto-Uoshima, Ying Zhuo Yan, Galen Schneider and Ikramuddin Aukhil.: The alternatively spliced domains EIIIB and EIIIA of human fibronectin affect cell adhesion and spreading. Journal of Cell Science, 110:2271-2280, 1997
  52. Daniel J. Leahy, Ikramuddin Aukhil, and Harold P. Erickson.: 2.0? Crystal Structure of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop and Synergy Region. Cell, 84:155-164, 1996 https://doi.org/10.1016/S0092-8674(00)81002-8
  53. Mrksich M, Chen c, Xia Y, Dike L, Ingber D, Whitesides G.: Controlling cell attachment on contoured surfaces with self-as-sembled monolayers of alkanethiolates on gold. Proc Natl Acad Sci, 93(20):10775-8, 1996 https://doi.org/10.1073/pnas.93.20.10775
  54. MacDonald DE, Markovic B, Allen M, Somasundaran P, Boskey A.: Surface analysis of human plasma fibronectin adsorbed to commer materials. J Biomed Mater Res, 41(1):120-130, 1998 https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<120::AID-JBM15>3.0.CO;2-R
  55. Mrksich M, Whitesides G.: Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Ann Rev Biophys Biomol Struct, 25:55-78, 1996 https://doi.org/10.1146/annurev.bb.25.060196.000415
  56. Laisheng Chou, James D. Firth, Veli-Jukka Uitto, Donald M. Brunette.: Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. Journal of Cell Science, 108:1563-1573, 1995
  57. B. Kasemo, J. Gold, C. Minkin, V.C. Marinho.: Implant surfaces and Interface Processes Role of the Osteoclast at the bone-implant interface Adv Dent Res, June 13:8-56, 1999
  58. M. P. Ferraz, J. C. Knowles, I. Olsen, F. J. Monteiro, J. D. Santos.: Flow cytometry analysis of effects of glass on response of osteosarcoma cells to plasma-sprayed hydroxyapatite/CaO-P2 O5 coatings. Biomaterial, 20: 2210-2218, 1999
  59. A.J. Bergman, K. Zygourakis. Migration of lymphocytes on 'fibronectin-coated surfaces: temporal evolution of migratory parameters. Biomaterials 1999;20:2235-2244 https://doi.org/10.1016/S0142-9612(99)00154-4
  60. Barbara D. Boyan, Victor L. Sylvia, Yuhong Liu, Ruben Sagun, David L. Cochran, Christoph H. Lohmann, David D. Dean, Zvi Schwartz.: Surface roughness mediates its elects on osteoblasts via protein kinase A and phospholipase. Biomaterials, 20:2305-2310, 1999 https://doi.org/10.1016/S0142-9612(99)00159-3
  61. D. M. Ferris, G. D. Moodie, P. M. Diamond, C. W. D. Gioranni, M. G. Ehrlich, R. F. Valentini.: RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials, 20:2323-2331, 1999 https://doi.org/10.1016/S0142-9612(99)00161-1
  62. Akira Okumura, Masaaki Goto, Tetsuya Goto, Masao Yoshinari, Sadahiko Masuko, Takeshi Katsuki, Teruo Tanaka.: Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2). Biomaterials, 22:2263-2271, 2001 https://doi.org/10.1016/S0142-9612(00)00415-4
  63. Kristin B. McClary, Tatiana Ugarova, David W. Grainger.: Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res, 50:428-439, 2000 https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H
  64. Schneider GB, Zaharias R, Stanford C.: Osteoblast integrin adhesion and signaling regulate mineralization. J Dent Res, 80(6):1540-1544, 2001 https://doi.org/10.1177/00220345010800061201